STAT 102: Week 5

Ricky's Section

Introductions and Attendance

Introduction: Name

<u>**Question of the Week</u>**: Which best describes you: Data Visualizer (), Data Wrangler (\swarrow), or Data Collector (\swarrow)?</u>

Important Reminders

My Office Hours

- For this week, **Sat**, **o**₃/**o**₁ **at** 11 **AM** 12 **PM**, 1 2 **PM** in Adams D-Hall
- Most up-to-date information on Slack and Spreadsheet
 - <u>https://docs.google.com/spreadsheets/d/1AgnpomB7qUGtyRTI8Ansothj-</u> 2LbZnKJYO7qobr6c18/edit?usp=sharing
- Sorry for all the changes! Hopefully, things will be normal starting next week

- Written Component: Wed, 03/12 from 6 to 9
 PM in Science Center 705 and 706
- Oral Component: Over Zoom afterwards on 03/13 and 03/14 (10 minute sessions)
- No class/section on Thur, Mar 13
- You all got this! 🙂

Content Review: Week 3

Data Wrangling: Notes on summarize() and mutate()

- summarize() Allows for use of summary functions, such as
 mean(), sd(), cor(), IQR(), and
 n(), which can be set equal to new variables
 - summarize(mean_INCOME =
 mean(INCOME), mean_IRAX =
 mean(IRAX), households = n())

- mutate() Modifies existing
 variables and/or create new ones
 - hpi %>%

mutate(LogFootprint =
Log(Footprint))

Content Review: Week 5

Introduction to Inference

- Last week, we went from
 population to sample. Moving
 forward, we'll go from sample to
 population!
- Why? Recall the difficulty of obtaining a **census**
- We have data from a sample and are interested in concluding something about the population

Parameter vs. Statistic

Population parameter:

- Typically **unknown** (what we're interested in finding)
- For population proportion, it's denoted as *p*
 - This is for binary categorical variables
 - There are many other parameters, which we'll soon learn about!
- Ex: Out of all 67 million viewers of the debate, how many believed Harris won? I don't know!

<mark>Sample statistic</mark>:

- Known/calculated from the sample
- For **sample proportion**, it's denoted as \hat{p}
- Ex: From my (random) sample of 600
 viewers, how many believed Harris won?
 Let's say it was 300, so p̂ = 0.5

A **sample statistic** is a **point estimate** of the **population parameter** (i.e., our best guess, but we could be wrong)

Other Parameters and Statistics

	Response Variable		Numeric Quantity	Sample Statistic	Population Parameter
1 variable	Numerical Binary Categorical		Mean	x	μ
			Proportion	ĝ	р
	Response variable	Explanatory Variable	Numeric Quantity	Sample Statistic	Population Parameter
2 variables	Numerical	Binary Categorical	Difference in Means	$\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2$	μ ₁ - μ ₂
	Binary Categorical	Binary Categorical	Difference in Proportions	$\hat{\mathbf{p}}_1 - \hat{\mathbf{p}}_2$	p ₁ - p ₂
	Numerical	Numerical	Correlation	r	ρ

What is unknown here? Does it make sense to have a confidence interval for the sample statistic?

Question:

What is unknown here? Does it make sense to have a confidence interval for the sample statistic? The **population parameter** is unknown while the **sample statistic** is known (it's a number we calculate, like $\bar{x} = \$210,000$), so it doesn't make sense to have a **confidence interval** for the sample statistic.

Conversely, we want to know more about the (unknown) population parameter.

Sampling Variability

- We could've taken a different **sample** of 600 people from the **population** of 67 million viewers
 - The **sample proportion** (probably) would've differed
- Sampling variability refers to the differences in the sample statistic from sample to sample
 - If we take many samples, how much would the **sample proportion** vary?
 - $\hat{p} = 0.5$ in this sample, but $\hat{p} = 0.4$ in that sample, and so on

Sampling Distribution

Sampling distribution of a statistic:

- Graph of sample statistics from repeated samples (requires access to entire population)
- Center of sampling distribution is population parameter
- As *n*, sample size of each rep, increases...
 - **Standard error** (standard deviation of sampling distribution) **decreases** (indicated by less spread)
 - Sampling distribution becomes more bell-shaped and symmetric

Coin Flips: An Intuition behind Sampling Distributions

- Let's flip a fair coin 10 times and record the proportion of heads
- Will our sample statistic always be 0.5? No!
- The center is the "theoretical" population proportion (p = 0.5)
- We're graphing a bunch of sample proportions ($\hat{p}_1 = 0.4, \hat{p}_2$ = 0.5, $\hat{p}_3 = 0.6, ...$)

What is the "problem" with the sampling distribution? I.e., what do we need access to?

Question:

What is the "problem" with the sampling distribution? I.e., what do we need access to?

To construct a **sampling distribution**, we need access to the entire **population** from which to draw **repeated samples**.

This is not always practical.

Here's where the **bootstrap** distribution comes in!

Bootstrap Distribution

Bootstrap distribution of a sample statistic:

- Procedure: Take a sample of size *n* (with replacement) from the original sample, compute the statistic on this bootstrap sample, and repeat many times to get many bootstrap statistics (basically, sampling the sample)
 - We no longer need the entire **population**
- Bootstrap distribution graphs these bootstrap statistics
- Center of bootstrap distribution is the original sample statistic

Example of Bootstrapping

<u>Population</u>: {100, 250, 75, 30, 50, 75, 100, 300, 120, 55, 80, 90}, $\mu = 110.416...$ **Original Sample (n = 4)**: {250, 75, 75, 120}, \bar{x} = 130 **Bootstrap sample** #1 (n = 4): {250, 120, 120, 250}, b₁ = 185 **Bootstrap sample** #2 (n = 4): {75, 120, 75, 250}, $b_2 = 130$ **Bootstrap sample** #3 (n = 4): {75, 75, 120, 75}, $b_3 = 86.25$ and so on...

Sampling Distribution vs. Bootstrap Distribution

Sampling distribution:

- Requires access to the entire population
- Its center is the population parameter
- Its spread/standard deviation is the standard error, which we need to compute a CI

Bootstrap distribution:

- Does NOT require access to the entire **population**
 - We only need **1** sample
- Its **center** is the **sample statistic**
- Its spread/standard deviation is a good estimate for standard error

Confidence Interval

<u>Confidence interval</u>: Range of **plausible** values (around the **sample statistic**) that may contain the **population parameter**

- **<u>SE method</u>**: CI = statistic $\pm z^* \times (\widehat{S}\widehat{E})$
 - z* is critical value, SÊ is standard deviation of bootstrapped statistics (spread of bootstrap distribution)
 - Ex: 95% CI = statistic $\pm 1.96(\hat{S}\hat{E})$
- <u>Percentile method</u>: CI = the middle (CL)% of the bootstrap distribution
 - CL = confidence level
 - *Ex:* 95% *CI* = the middle 95% of the bootstrap distribution

I tell you we're 100% confident the true average hours of sleep Harvard students get every night (our population parameter) is between 0 and 24 hours. Is this informative?

Question:

I tell you we're 100% confident the true average hours of sleep Harvard students get every night (our population parameter) is between 0 and 24 hours. Is this informative?

No, not really!

This is why it's important we choose a good confidence level (usually, but not always, 95%).

There's a trade-off between how narrow/informative our interval is and how confident we are.

Interpreting Confidence Intervals

- "We are {confidence level}% confident that the interval ({lower bound}, {upper bound}) captures the true {population parameter}."
 - Confidence is NOT probability
 - Either the **parameter** is in the CI (100% probability) or it's not (0% probability)
 - For a 95% CI, we expect it to succeed (for it to capture the population parameter) **95/100 times**

THE MEANING OF CONFIDENCE...

Twenty-five samples of size n = 60 were taken from the 'artificial' population, then a 95% CI for μ was computed based on each sample. Only 1 of these 25 intervals did not contain μ .

An Analogy with Ring Toss

https://medium.com/@EpiEllie/having-confidence-inconfidence-intervals-8f881712d837

But really confidence intervals are more like ring toss: -the true value is fixed & the interval might end up around it. confidence. value interval Cepiellie

Why does the sampling dist. get narrower as we increase n?

Question:

Why does the sampling dist. get narrower as we increase n?

n is the **sample size** of each rep.

When *n* is small (e.g., n = 10), we're drawing small samples, so a single outlier can drastically skew our sample statistic. As *n* increases, outliers become less "powerful."

Also, we know when *n* is the **population**, the **sampling statistic** is just the **population parameter**.

Important Code for Week 5

<u>https://drive.google.com/file/d/1dl7IlLhz9u4cAh</u> <u>Kio_zj7Fkxxs-bxVfk/view?usp=drive_link</u>

Questions?

Midterm Review (Weeks 1-5)

Week 2: Data Visualization

- <u>Grammar of graphics</u>: Dataset, geom, aesthetic
- <u>Color palettes</u>: Sequential, diverging, qualitative
- <u>Choosing the right graph</u>

Week 3: Data Wrangling

- **<u>Data joins</u>**: Left, (right), inner, full
- <u>Creating/modifying variables</u>
- <u>Grouping/filtering/selecting data</u>
- **<u>Summary statistics</u>**: Mean, median, SD, IQR
- Handling missing values (NA)
- Interpreting code in English

Week 4: Data Collection

- <u>Groups</u>: Sample, census, population
- Observational study vs. experiment
- <u>**Two types of bias</u>**: Sampling, nonresponse</u>
- <u>Four sampling methods</u>: Simple, systematic, cluster, stratified

Week 5: Simulation-Based Inference

- <u>Parameter vs. statistic</u>
- **Distributions**: Sampling, bootstrap
- <u>**Confidence intervals</u>**: Constructing, interpreting</u>

<mark>Midterm Tips</mark>

- **PLEASE SET A TIMER FOR THE ORAL**! There should be 3 questions in 10 minutes, so try not to "ramble"
- If you haven't already, make a **study guide**
- **Partial credit** counts (so don't delete all your code)
- Remember to **load all relevant libraries**
- **Pace yourself**—if a question is taking too long, move on
- Sign up for **practice oral exams** (usually not 3 questions)

Midterm Practice

Practice 1: Everybody

<u>https://drive.google.com/file/d/1GjMautF3pZow</u> <u>G6DIgLDWcDoVt3DlFJyO/view?usp=drive_link</u>

Practice 2: Person A (Grade Q1, Answer Q2)

https://drive.google.com/file/d/1101gLTgPXgkW N3JtudLDno5xphQ3ky3T/view?usp=drive_link

Practice 2: Person B (Answer Q1, Grade Q2)

<u>https://drive.google.com/file/d/1w6EkCBEeNHP</u> <u>VdPBhmUVxF64zAoHZ1pQK/view?usp=drive_lin</u>

k

Questions?

P-Set 4

Have a great rest of your week!