
STAT 102: Week 12
Ricky’s Section



Introductions and Attendance

Introduction: Name

Question of the Week: What is your favorite 
function in R? Credit to Maggie for this question!
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Content Review: Week 11
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Let’s (Quickly) Recap Linear Regression

- Linear regression: Models the linear relationship between numerical 
response variable (y) and explanatory variables (x), which can be either 
numerical or categorical

- For now, we’ll focus on simple linear regression, which only has one explanatory variable
- The form of this model is ŷ = B̂0 + B̂1x

- Note: B̂ is supposed to represent beta hat (β + ˆ)
- The coefficients (B̂0 and B̂1) have different interpretations depending on 

whether x is numerical or categorical 
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Explanatory Variable: Numerical

- When x is numerical…
- The model represents a “line of best 

fit”
- B̂0 is the y-intercept

- When price percentage equals 0%, the 
average win percentage is 42%

- B̂1 is the slope
- As price percentage increases by 1%, 

the win percentage increases by 
0.178%, on average

- Least-squares regression finds the 
optimal values of B̂0 and B̂1 by 
minimizing residuals (errors)
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Explanatory Variable: Binary Categorical

- When x is binary categorical… 
- The model represents means (one 

for each of the two group)
- B̂0 is the mean of y in the baseline 

group (when x = 0)
- For candy without chocolate, the 

average win percentage is 42.1%
- B̂1 is the difference in means of 

other group from baseline group 
(ȳother - ȳbaseline)

- Candy with chocolate has a higher 
average win percentage than candy 
without chocolate by 18.8%
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Linear Regression: Code

- Fitting the model: Use this to build your model
- MODEL <- lm(Y-VAR ~ X-VAR, data = DATASET)

- model <- lm(winpercent ~ pricepercent, data = candy)

- Getting the numbers: Use this to summarize your model
- get_regression_table(MODEL)

- get_regression_table(model)

- Predicting: Use this for your model to predict y-value of new instances
- predict(MODEL, newdata = data.frame(Y-VAR = VALUE))

- predict(model, newdata = data.frame(pricepercent = 85))
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Population Model vs. Estimated Model

- Population model: y = B0 + B1x + 
ε

- ε is error/“random noise” 
around the line (population 
parameter for the 
residuals)

- ε ~ N(0, σ)
- B0 and B1 are population 

parameters
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- Estimated model: ŷ = B̂0 + B̂1x
- This is what our “line of best 

fit” is
- B̂0 and B̂1 are estimates of 

the population parameters
- ε “disappears” because the 

estimated model is a 
straight line



Content Review: Week 11
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Introducing Multiple Linear Regression

- Multiple linear regression: Models the linear relationship between 
numerical response variable (y) and multiple explanatory variables (x1, x2, 
…, xp), which can be either numerical or categorical

- The form of this model is ŷ = B̂0 + B̂1x1 + … + B̂pxp
- Note: B̂ is supposed to represent beta hat (β + ˆ)

- B̂k (coefficient of predictor xk) is predicted mean change in y (response 
variable) corresponding to 1 unit change in xk when all other predictors are 
held constant

- If xk is numerical, think of slope
- If xk is categorical, think of difference in means (of group where xk = 1 from baseline group)
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For houses, if I want to 
predict price based on 
living area and whether or 
not there’s central air, 
what is p (number of 
predictors)?
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Question:
For houses, if I want to predict price 
based on living area and whether or 

not there’s central air, what is p 
(number of predictors)?

We’ll use linear regression to model 
this relationship.

ŷ = price

x1 = living area (numerical)

x2 = whether or not there’s central 
air (categorical)

Thus, p = 2.
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Example: Houses
- Variables: price (ŷ), living area (x1), 

whether or not there’s central air (x2)
- x1 is numerical, x2 is categorical
- Baseline group is houses WITH central air

- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2
- Line when x2 = 0 (houses WITH central 

air): ŷ = B̂0 + B̂1x1
- y-intercept = B̂0, slope = B̂1

- Line when x2 = 1 (houses WITHOUT 
central air): ŷ = (B̂0 + B̂2) + B̂1x1

- y-intercept = B̂0 + B̂2, slope = B̂1
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Example: Houses
- Variables: price (ŷ), living area (x1), 

whether or not there’s central air (x2)
- x1 is numerical, x2 is categorical
- Baseline group is houses WITH central air

- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2
- Line when x2 = 0 (houses WITH central 

air): ŷ = B̂0 + B̂1x1
- y-intercept = B̂0, slope = B̂1

- Line when x2 = 1 (houses WITHOUT 
central air): ŷ = (B̂0 + B̂2) + B̂1x1

- y-intercept = B̂0 + B̂2, slope = B̂1
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- Since we have multiple variables, be 
careful interpreting the coefficients

- B̂0: For houses with central air (x2 = 0), 
when living area (x1) equals 0, the price (ŷ) 
is $42,595 (B̂0), on average

- B̂1: Controlling for central air (x2), as 
living area (x1) increases by 1 unit, price 
(ŷ) increases by $107 (B̂1), on average

- B̂2: Controlling for living area (x1), houses 
without central air (x2 = 0) cost $28,451 
(B̂2) less than houses with central air (x2 = 
1), on average



The General “Formulas” for Equal-Slopes (When x2 Is Categorical)

- B̂0 is y-intercept of line when x2 = 0
- Ex: For houses with central air (x2 = 0), when living area (x1) equals 0, the price (ŷ) is $42,595 

(B̂0), on average
- Since this is equal-slopes, B̂1 is slope of both lines (a.k.a. increase in ŷ after 

1-unit increase in x1, controlling for x2)
- Ex: Controlling for central air (x2), as living area (x1) increases by 1 unit, price (ŷ) increases by 

$107 (B̂1), on average
- B̂0 + B̂2 is y-intercept of line x2 = 1, so B̂2 is difference in ŷ between both lines 

(ŷother - ŷbaseline), controlling for x1
- Ex: Controlling for living area (x1), houses without central air (x2 = 0) cost $28,451 (B̂2) less than 

houses with central air (x2 = 1), on average
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Looking at the 
tibble, how can we 
tell what’s the 
baseline group?
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Question:
Looking at the tibble, how can 

we tell what’s the baseline 
group?

Remember the baseline group is 
when xk = 0 for some categorical 
predictor xk.

Things are relative to the baseline 
group, so the tibble presents the 
“change” with the categorical 
predictor (to xk = 1 from xk = 0).

Thus, the baseline group is the 
OPPOSITE of the group shown.
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Baseline Group

The output tells us “centralAir: No” 
has an estimate of -28,451. Thus, 
“centralAir: Yes” (a.k.a. houses WITH 
central air) is our baseline group.
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Categorical Variables with 2+ Categories

- Linear regression can accommodate categorical variables with 2+ 
categories

- Ex: We can predict RFFT score with the categorical variable of education, which can be “Lower 
Secondary,” “Higher Secondary,” or “University”

- When x is a categorical variable with k + 1 categories…
- B̂0 represents the mean of y in the baseline group (one of those k + 1 categories)
- B̂k represents the difference in means—specifically, going from x = 0 (baseline group) to x = 

k (one of the other groups)
- Thus, B̂k = ȳgroup k -  ȳbaseline

- We can confirm our answers with some data wrangling
- Let’s look at an example…
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Assumptions for (Multiple) Linear Regression

- Linearity: For each predictor variable xk , the change in the predictor is 
linearly related to change in the response variable when the values of all 
other predictors are held constant

- Constant Variability: The residuals (errors) have approximately constant 
variance

- Independence: Each observation is independent (i.e., value of one 
observation provide no information about value of others)

- Normality: The residuals (errors) are approximately normally distributed
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Assumption #1: Linearity

- Check via “residual vs. 
predictor” plot with ggplot()

- For each numerical predictor, plot 
the residuals on the y-axis and the 
predictor values on the x-axis

- If data is linear, points should 
scatter from y = 0 randomly, 
with no pattern

22

- ggplot(MODEL, aes(y = .resid, x = NUM-PREDICTOR) + 
geom_point() + geom_hline(yintercept = 0)

- ggplot(mod_rfft, aes(y = .resid, x = Age)) + geom_point(alpha 
= 0.5, col = "cornflowerblue") + geom_hline(yintercept = 0, 
lty = 2, col = "red") + labs(y =  "Residuals", x = "Age", 
title = "Residuals vs. Age Plot")



Assumption #2: Constant Variability

- Check via residual plot, which 
plots residuals of model across 
domain

- Vertical spread of points should 
be roughly constant across 
domain, with no “fanning”

- This interpretation is different from 
linearity; here, cite the upper and 
lower bounds (in green) to show 
there is no “fanning”
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- ggplot(MODEL) + stat_fitted_resid()

- ggplot(model) + stat_fitted_resid(alpha 

= 0.25)



Assumption #3: Independence

- Check by considering how data was collected
- If there’s independence, knowing observation #1 gives no 

information about observation #2
- Ex: If data was randomly sampled, then independence can be reasonably 

assumed
- Ex: If data was collected within a family (and we’re measuring blood sugar, 

e.g.), then independence might not apply. Why?
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Assumption #4: Normality
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- ggplot(MODEL) + stat_normal_qq()

- ggplot(model) + 

stat_normal_qq(alpha = 0.25)

- Check via Q-Q plot, which plots 
residuals against theoretical 
quantiles of normal distribution

- If residuals were perfectly normally 
distributed, they’d exactly follow 
the diagonal

- We’re not looking for perfect—just 
make sure it’s reasonable

- Points should have a linear 
relationship, with no breaks at 
tails



Returning to Inference: Population Model vs. Estimated Model

- Population model: y = B0 + B1x1 
+ … + Bpxp + ε

- ε is error/“random noise” 
around the line (population 
parameter for the 
residuals)

- ε ~ N(0, σ)
- Bk is population parameter
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- Estimated model: ŷ = B̂0 + B̂1x1 + 
… + B̂pxp

- This is what our “line of best 
fit” is

- B̂k is estimate of the 
population parameter

- ε “disappears” because the 
estimated model is a 
straight line



Inference in (Multiple) Regression: Hypothesis Tests

- The observed data is assumed to have been randomly sampled from a 
population where the explanatory variable (X) and the response variable (Y) 
follow a population model

- Population model: Y = B0 + B1X1 + … + BpXp + ε
- Like before, but we’re now using capital letters to indicate random variables

- Estimated model: ŷ = B̂0 + B̂1x1 + … + B̂pxp

- Usually, we’re concerned with slope parameter (Bk)
- H0: Bk = 0 (i.e., there is no association between Xk and Y after controlling for all other 

predictors in the model)
- HA: Bk ≠ 0 (i.e., there is an association between Xk and Y after controlling for all other 

predictors in the model)

27



Inference in (Multiple) Regression: Hypothesis Tests

- When assumptions are met (including 4 assumptions for multiple linear 
regression), then the t-statistic follows a t-distribution with degrees of 
freedom n − p - 1, where n is the number of cases and p is the number of 
predictors

- t = (B̂k - Bk
0)/SE(B̂k)

- Recall our null hypothesis is (often) Bk = 0, so the Bk
0 term can go away

- t = (B̂k)/SE(B̂k)
- Our computers can calculate this for us!

- get_regression_table(MODEL)

- get_regression_table(model)
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Inference in (Multiple) Regression: Confidence Intervals

- Confidence interval: Recall the form of a confidence interval is CI = sample 
statistic ± ME

- CI = B̂k ± (t* × SE(B̂k))
- t* is the point on a t-distribution with n − p - 1 degrees of freedom and α/2 area to the right
- “With {α}% confidence, an increase in {explanatory variable} by 1 unit is associated with a 

change in average {response variable} between {lower bound} and {upper bound} units 
when holding {other explanatory variables in model} constant.”

- Ex: With 95% confidence, statin users have an average RFFT score that is between 4.2 points lower 
to 5.9 points higher than non statin users when holding age constant. Here, xk is categorical, so this 
is better interpreted as a difference in means.

- Our computers can calculate this for us (use get_regression_table())!
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Confidence Interval vs. Prediction Interval

- Confidence interval for mean 
response: Tries to find plausible 
range for parameter

- Centered at ŷ, with smaller SE
- Ex: We are 95% confident that the 

average price of 20 year-old, 1,500 
square-feet Saratoga houses with 
central air and 2 bathrooms is 
between $199,919 and $211,834

30

- Prediction interval for 
individual response: Tries to 
find plausible range for a single, 
new observation

- Centered at ŷ, with larger SE
- Ex: For a 20 year-old, 1,500 

square-foot Saratoga house with 
central air and 2 bathrooms, we 
predict, with 95% confidence, the price 
will be between $73,885 and $337,869



Confidence Interval vs. Prediction Interval: Code
- OBSERVATION-OF-INTEREST <- 

data.frame(EXPL-VAR(S) = VALUE(S))

- predict(MODEL, newdata = 

OBSERVATION-OF-INTEREST, interval 

= "confidence", level = 

CONF-LEVEL)
- house_of_interest <- 

data.frame(livingArea = 1500, age 

= 20, bathrooms = 2, centralAir = 

"yes")

- predict(model, house_of_interest, 

interval = "confidence", level = 

0.95)
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- OBSERVATION-OF-INTEREST <- 

data.frame(EXPL-VAR(S) = VALUE(S))

- predict(MODEL, newdata = 

OBSERVATION-OF-INTEREST, interval 

= "prediction", level = 

CONF-LEVEL)
- house_of_interest <- 

data.frame(livingArea = 1500, age 

= 20, bathrooms = 2, centralAir = 

"yes")

- predict(model, house_of_interest, 

interval = "prediction", level = 

0.95)



Two Types of Mult. Linear Regression: Equal-Slopes, Varying-Slopes
- Equal-Slopes: Assumes change in y 

associated with change in 1 explanatory 
variable—a.k.a. the slope—DOES NOT 
DEPEND on other explanatory variable(s) 
in model

- Visually, we see equal slopes in the lines
- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2 + … 

+ B̂pxp
- We see there are no terms where the x 

variables interact with each other
- Code: — <- lm(— ~ — + —, data = —)
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- Varying-slopes model: Assumes change 
in y associated with change in 1 
explanatory variable—a.k.a. the 
slope—DOES DEPEND on other 
explanatory variable(s) in model, so 
interaction term(s) is present

- Visually, we see different slopes in the 
lines

- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2 + 
B̂3x1x2 + … + B̂pxp

- We see there is an interaction term 
between x1 and x2: B̂3x1x2

- Code: — <- lm(— ~ — * —, data = —)



For houses, if I want to predict 
price based on living area and 
whether or not there’s central 
air—now with a varying slopes 
model—what is p (number of 
predictors)?
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Question:
For houses, if I want to predict price based on 
living area and whether or not there’s central 

air—now with a varying slopes model—what is p 
(number of predictors)?

We’ll use linear regression (with 
varying-slopes) to model this 
relationship.

ŷ = price

x1 = living area (numerical)

x2 = whether or not there’s central 
air (categorical)

Thus, p = 2—like last time!
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Example: Houses (But with Varying-Slopes)
- Variables: price (ŷ), living area (x1), 

whether or not there’s central air (x2)
- x1 is numerical, x2 is categorical
- Baseline group is houses WITH central air

- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2 + 
B̂3x1x2

- Line when x2 = 0 (houses WITH central 
air): ŷ = B̂0 + B̂1x1

- y-intercept = B̂0, slope = B̂1
- Line when x2 = 1 (houses WITHOUT 

central air): ŷ = (B̂0 + B̂2) + (B̂1 + B̂3)x1
- y-intercept = B̂0 + B̂2, slope = B̂1 + 

B̂3
- Notice the slopes are different!
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Example: Houses (But with Varying-Slopes)
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- B̂0: For houses with central air (x2 = 0), when 
living area (x1) equals 0, the price (ŷ) is -$8,248 
(B̂0), on average

- B̂1: For houses with central air (x2 = 0), as living 
area (x1) increases by 1 unit, price (ŷ) increases by 
$132 (B̂1), on average

- B̂2: When living area (x1) equals 0, houses 
without central air (x2 = 1) cost $53,226 (B̂2) more 
than houses with central air (x2 = 0), on average

- B̂3: Houses without central air (x2 = 1) have a 
lower slope than houses with central air by 
$44.6/unit (B̂3). For houses without central air (x2 
= 1), as living area (x1) increases by 1 unit, price 
(ŷ) increases by $87.4 (B̂1 - B̂3), on average

- Variables: price (ŷ), living area (x1), 
whether or not there’s central air (x2)

- x1 is numerical, x2 is categorical
- Baseline group is houses WITH central air

- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2 + 
B̂3x1x2

- Line when x2 = 0 (houses WITH central 
air): ŷ = B̂0 + B̂1x1

- y-intercept = B̂0, slope = B̂1
- Line when x2 = 1 (houses WITHOUT 

central air): ŷ = (B̂0 + B̂2) + (B̂1 + B̂3)x1
- y-intercept = B̂0 + B̂2, slope = B̂1 + 

B̂3
- Notice the slopes are different!



The General “Formulas” for Varying-Slopes (When x2 Is Categorical)
- B̂0 is y-intercept of line when x2 = 0

- Ex: For houses with central air (x2 = 0), when living area (x1) equals 0, the price (ŷ) is -$8,248 (B̂0), on average
- B̂1 is slope of line when x2 = 0

- Ex: For houses with central air (x2 = 0), as living area (x1) increases by 1 unit, price (ŷ) increases by $132 (B̂1), on 
average

- B̂0 + B̂2 is y-intercept of line when x2 = 1 (houses without central air), so B̂2 is difference in 
y-intercepts between both lines (bother - bbaseline)

- Ex: When living area (x1) equals 0, houses without central air (x2 = 1) cost $53,226 (B̂2) more than houses with 
central air (x2 = 0), on average

- B̂1 + B̂3 is slope of line when x2 = 1 (houses without central air), so B̂3 is difference in slopes between 
both lines (mother - mbaseline)

- Ex: Houses without central air (x2 = 1) have a lower slope than houses with central air by $44.6/unit (B̂3)
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Inference with Varying-Slopes

- Same idea as before, but now we can infer about 
population interaction coefficient (B3) instead of 
population slope coefficient (B1)

- H0: B3 = 0 (i.e., association/slope between y and x1 doesn’t differ by 
category)

- HA: B3 ≠ 0 (i.e., association/slope between y and x1 differs by category)
- Again, our computers give us this info with 

get_regression_table()!
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When should I 
use equal-slopes 
vs. 
varying-slopes?
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Question:
When should I use equal-slopes 

vs. varying-slopes?

Consider your goal with the model. 

With varying-slopes, certain 
questions (like the average 
difference in cholesterol between 
diabetic groups, controlling for age) 
can’t be answered.

With equal-slopes, certain 
questions (like whether or not the 
relationship/slope differs between 
groups) can’t be answered.
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r2: Coefficient of Determination

- r2: Percent of total variation in y (response variable) explained by the model
- r2 = (r)2 = Var(ŷi)/Var(yi)
- If the linear model perfectly captured the variability in the observed data, then Var(ŷi) = 

Var(yi); thus, r2 would be 1
- If r2 is too low, try different model; however, r2 only increases as new predictors are added to 

a model
- adj(r2): Value of r2 adjusted for size of model (penalizes too-large models)

- adj(r2) = r2  × ((n - 1)/(n - p - 1))
- n is sample size, p is number of predictors in model

- Basically, graph your data and pick the model with highest adj(r2)
- glance(MODEL)

- glance(model)
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Model Building Guidance
- In addition to looking at adj(r2), consider 

your explanatory variables in the model
- You want them to explain different 

aspects of the response variable
- It would be redundant to have both 

RottenTomatoes and AudienceScore in a 
model, for example

- Use ggpair() to see relationship between 
multiple explanatory variables

- If the graphs look alike, this tells you the 
variables are similar—consider removing 
one of them
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Questions?
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P-Set 8
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Have a great rest 
of your week!
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