STAT 102: Week 12

Ricky's Section

Introductions and Attendance

Introduction: Name

<u>**Question of the Week</u>**: What is your favorite function in R? Credit to Maggie for this question!</u>

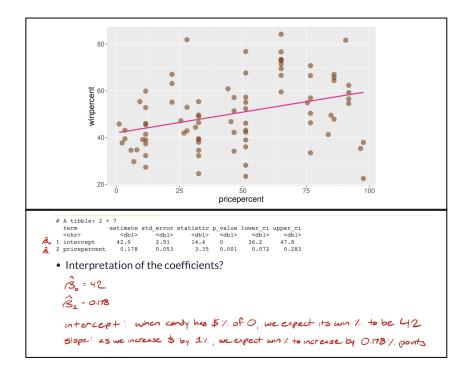
Content Review: Week 11

Let's (Quickly) Recap Linear Regression

- Linear regression: Models the linear relationship between numerical response variable (y) and explanatory variables (x), which can be either numerical or categorical
 - For now, we'll focus on **simple linear regression**, which only has one **explanatory variable**
- The form of this model is $\hat{\mathbf{y}} = \hat{\mathbf{B}}_{0} + \hat{\mathbf{B}}_{1}\mathbf{x}$
 - Note: \hat{B} is supposed to represent beta hat $(\beta + \hat{})$
- The **coefficients** $(\hat{B}_0 \text{ and } \hat{B}_1)$ have different interpretations depending on whether x is **numerical** or **categorical**

Explanatory Variable: Numerical

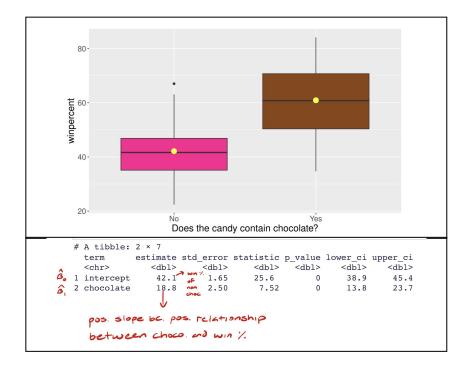
- When x is **numerical...**
 - The model represents a "line of best fit"
 - \hat{B}_{o} is the **y-intercept**
 - When price percentage equals 0%, the average win percentage is 42%
 - \hat{B}_1 is the slope
 - As price percentage increases by 1%, the win percentage increases by 0.178%, on average
 - Least-squares regression finds the optimal values of \hat{B}_0 and \hat{B}_1 by minimizing residuals (errors)



Explanatory Variable: Binary Categorical

- When x is **binary categorical**...

- The model represents means (one for each of the two group)
- $\hat{\mathbf{B}}_{\mathbf{o}}$ is the mean of y in the **baseline** group (when x = 0)
 - For candy without chocolate, the average win percentage is 42.1%
- **Â**₁ is the difference in means of other group from baseline group
 - $(\bar{y}_{other} \bar{y}_{baseline})$
 - Candy with chocolate has a higher average win percentage than candy without chocolate by 18.8%



Linear Regression: Code

- **<u>Fitting the model</u>**: Use this to build your model
 - MODEL <- lm(Y-VAR ~ X-VAR, data = DATASET)</pre>
 - model <- lm(winpercent ~ pricepercent, data = candy)</pre>
- <u>**Getting the numbers**</u>: Use this to summarize your model
 - get_regression_table(MODEL)
 - get_regression_table(model)
- **<u>Predicting</u>**: Use this for your model to predict y-value of new instances
 - predict(MODEL, newdata = data.frame(Y-VAR = VALUE))
 - predict(model, newdata = data.frame(pricepercent = 85))

Population Model vs. Estimated Model

- **<u>Population model</u>**: $y = B_0 + B_1 x + \epsilon$
 - ε is error/"random noise" around the line (population parameter for the residuals)
 - $\epsilon \sim N(0, \sigma)$
 - B_o and B₁ are population parameters

- **Estimated model**: $\hat{\mathbf{y}} = \hat{\mathbf{B}}_{0} + \hat{\mathbf{B}}_{1}\mathbf{x}$
 - This is what our "line of best fit" is
 - \hat{B}_{0} and \hat{B}_{1} are estimates of the population parameters
 - ε "disappears" because the estimated model is a straight line

Content Review: Week 11

Introducing Multiple Linear Regression

- <u>Multiple linear regression</u>: Models the linear relationship between numerical response variable (y) and multiple explanatory variables (x₁, x₂, ..., x_p), which can be either numerical or categorical
- The form of this model is $\hat{\mathbf{y}} = \hat{\mathbf{B}}_0 + \hat{\mathbf{B}}_1 \mathbf{x}_1 + \dots + \hat{\mathbf{B}}_p \mathbf{x}_p$
 - Note: \hat{B} is supposed to represent beta hat $(\beta + \hat{})$
- \hat{B}_k (coefficient of predictor x_k) is predicted mean change in y (response variable) corresponding to 1 unit change in x_k when all other predictors are held constant
 - If x_k is **numerical**, think of slope
 - If x_k is **categorical**, think of difference in means (of group where $x_k = 1$ from baseline group)

For houses, if I want to predict price based on living area and whether or not there's central air, what is p (number of predictors)?

Question:

For houses, if I want to predict price based on living area and whether or not there's central air, what is p (number of predictors)? We'll use linear regression to model this relationship.

 $\hat{\mathbf{y}} = \mathbf{price}$

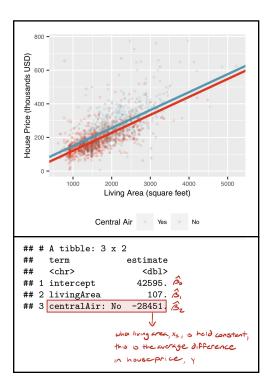
x₁ = living area (numerical)

x₂ = whether or not there's central air (categorical)

Thus, p = 2.

Example: Houses

- <u>Variables</u>: price $(\hat{\mathbf{y}})$, living area (\mathbf{x}_1) , whether or not there's central air (\mathbf{x}_2)
 - x_1 is numerical, x_2 is categorical
 - Baseline group is houses WITH central air
- **Estimated model**: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1 + \hat{B}_2 x_2$
 - <u>Line when $x_2 = o$ (houses WITH central</u> <u>air)</u>: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1$
 - **y-intercept** = \hat{B}_0 , **slope** = \hat{B}_1
 - <u>Line when $x_2 = 1$ (houses WITHOUT</u> <u>central air</u>): $\hat{y} = (\hat{B}_0 + \hat{B}_2) + \hat{B}_1 X_1$ - **y-intercept** = $\hat{B}_0 + \hat{B}_2$, slope = \hat{B}_1



Example: Houses

- <u>Variables</u>: price (\hat{y}) , living area (x_1) , whether or not there's central air (x_2)
 - x_1 is numerical, x_2 is categorical
 - Baseline group is houses WITH central air
- **Estimated model**: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1 + \hat{B}_2 x_2$
 - <u>Line when $x_2 = o$ (houses WITH central</u> <u>air)</u>: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1$
 - **y-intercept** = \hat{B}_0 , **slope** = \hat{B}_1
 - <u>Line when $x_2 = 1$ (houses WITHOUT</u> <u>central air</u>): $\hat{y} = (\hat{B}_0 + \hat{B}_2) + \hat{B}_1 x_1$ - y-intercept = $\hat{B}_0 + \hat{B}_2$, slope = \hat{B}_1

- Since we have **multiple variables**, be careful interpreting the **coefficients**
 - $\frac{\hat{\mathbf{B}}_{0}}{\hat{\mathbf{B}}_{0}}$: For houses with central air ($\mathbf{x}_{2} = \mathbf{0}$), when living area (\mathbf{x}_{1}) equals 0, the price ($\hat{\mathbf{y}}$) is \$42,595 ($\hat{\mathbf{B}}_{0}$), on average
 - <u>B</u>: Controlling for central air (x₂), as living area (x₁) increases by 1 unit, price (ŷ) increases by \$107 (B̂₁), on average
 - <u>B</u>₂: Controlling for living area (x₁), houses without central air (x₂ = 0) cost \$28,451 (B₂) less than houses with central air (x₂ = 1), on average

The General "Formulas" for Equal-Slopes (When x₂ Is Categorical)

- $\hat{\underline{B}}_{0}$ is y-intercept of line when $x_{2} = 0$
 - Ex: For houses with central air $(x_2 = 0)$, when living area (x_1) equals 0, the price (\hat{y}) is \$42,595 (\hat{B}_0) , on average
- Since this is equal-slopes, $\underline{\hat{B}}_{1}$ is **slope of both lines** (a.k.a. increase in \hat{y} after 1-unit increase in x_{1} , **controlling for** x_{2})
 - Ex: Controlling for central air (x_{2}) , as living area (x_{1}) increases by 1 unit, price (\hat{y}) increases by \$107 (\hat{B}_{1}) , on average
- $\hat{B}_0 + \hat{B}_2$ is y-intercept of line $x_2 = 1$, so $\hat{\underline{B}}_2$ is difference in \hat{y} between both lines $(\hat{y}_{other} \hat{y}_{baseline})$, controlling for x_1
 - Ex: Controlling for living area (x_1) , houses without central air $(x_2 = 0) \cos t$ (\hat{B}_2) less than houses with central air $(x_2 = 1)$, on average

Looking at the tibble, how can we tell what's the baseline group?

Question:

Looking at the tibble, how can we tell what's the baseline group?

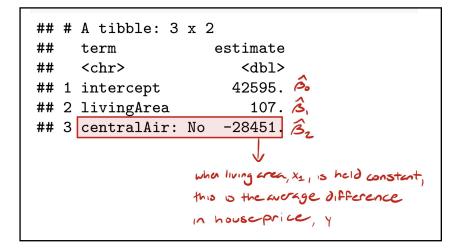
Remember the **baseline group** is when $x_k = o$ for some categorical predictor x_k .

Things are relative to the **baseline** group, so the tibble presents the

"change" with the **categorical**

predictor (to $x_k = 1$ from $x_k = 0$).

Thus, the **baseline group** is the OPPOSITE of the group shown.



The output tells us "centralAir: No" has an estimate of -28,451. Thus, "centralAir: Yes" (a.k.a. houses WITH central air) is our baseline group.

Categorical Variables with 2+ Categories

- **Linear regression** can accommodate **categorical variables** with 2+ categories
 - Ex: We can predict RFFT score with the categorical variable of education, which can be "Lower Secondary," "Higher Secondary," or "University"
- When **x** is a **categorical variable** with k + 1 categories...
 - $\hat{\mathbf{B}}_{\mathbf{0}}$ represents the mean of y in the baseline group (one of those k + 1 categories)
 - $\hat{\mathbf{B}}_{\mathbf{k}}$ represents the **difference in means**—specifically, going from x = 0 (**baseline group**) to x = k (one of the other groups)
 - Thus, $\hat{\mathbf{B}}_{\mathbf{k}} = \bar{\mathbf{y}}_{\text{group }\mathbf{k}} \bar{\mathbf{y}}_{\text{baseline}}$
- We can confirm our answers with some data wrangling
- Let's look at an example...

INTERPRETING A CATEGORICAL PREDICTOR WITH SEVERAL LEVELS

$$\widehat{\textit{RFFT}} = 40.9 + 14.8(\textit{Edu}_{LS}) + 32.1(\textit{Edu}_{HS}) + 45.0(\textit{Edu}_{Univ})$$

- When x is a categorical variable with k + 1 levels...
 - \diamond \hat{eta}_0 represents the mean of y in the baseline group
 - $\hat{\beta}_k$ represents the difference in means; specifically, going from x = 0 to x = k
- Mean RFFT score is 40.9 points among those with at most a Primary education.
- The mean RFFT score among those with at most a University education is 45 points higher than those with at most a Primary education: 40.9 + 45 = 85.9 points.
- The Edu_new: Univ coefficient equals $\overline{y}_{Univ} \overline{y}_{Primary} = 45$

```
prevend.samp %>%
group_by(Edu_new) %>%
summarize(mean_RFFT = mean(RFFT))
```

## # A tibble: 4 x 2	
## Edu_new <mark>mean</mark>	
## <fct></fct>	<dbl></dbl>
## 1 Primary	40.9
## 2 Lower Sec	55.7 + 32.2 + 45
## 3 Higher Sec	$ \begin{array}{c} \text{(dbl)} \\ 40.9 \\ 55.7 \\ 73.1 \end{array} + 14.8 \\ + 32.2 \\ + 45 \end{array} $
## 4 Univ	85.9
<pre>get_regression_table select(term, estim ## # A tibble: 4 x 2</pre>	ate)
## term	estimate : aff in means
## <chr></chr>	<dbl></dbl>
## 1 intercept	å = 40.9
## 2 Edu_new: Lower	Sec 🔏 - 14.8
## 3 Edu_new: Higher	
## 4 Edu_new: Univ	â ₃ = 45.0
	20

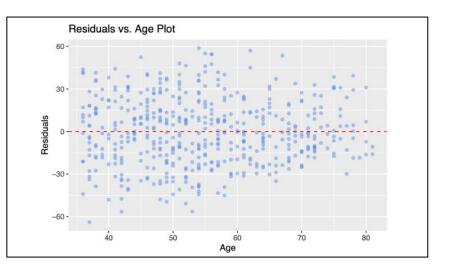
23/51

Assumptions for (Multiple) Linear Regression

- Linearity: For each predictor variable x_k, the change in the predictor is linearly related to change in the response variable when the values of all other predictors are held constant
- <u>Constant Variability</u>: The residuals (errors) have approximately constant variance
- <u>Independence</u>: Each observation is **independent** (i.e., value of one observation provide no information about value of others)
- **<u>Normality</u>**: The **residuals** (errors) are approximately **normally distributed**

Assumption #1: Linearity

- Check via "residual vs.
 predictor" plot with ggplot()
 - For each **numerical predictor**, plot the **residuals** on the y-axis and the **predictor values** on the x-axis
- If data is linear, points should scatter from y = o randomly, with no pattern

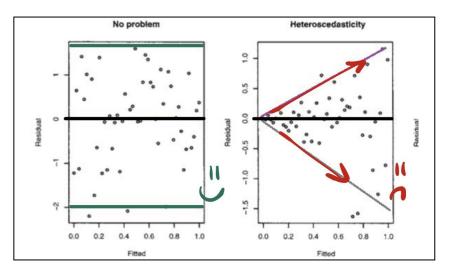


ggplot(MODEL, aes(y = .resid, x = NUM-PREDICTOR) +
geom_point() + geom_hline(yintercept = 0)

ggplot(mod_rfft, aes(y = .resid, x = Age)) + geom_point(alpha = 0.5, col = "cornflowerblue") + geom_hline(yintercept = 0, lty = 2, col = "red") + labs(y = "Residuals", x = "Age", title = "Residuals vs. Age Plot")

Assumption #2: Constant Variability

- Check via **residual plot**, which plots residuals of model across domain
- Vertical spread of points should be roughly constant across domain, with no "fanning"
 - This interpretation is different from **linearity**; here, cite the upper and lower bounds (in green) to show there is no "fanning"



- ggplot(MODEL) + stat_fitted_resid()

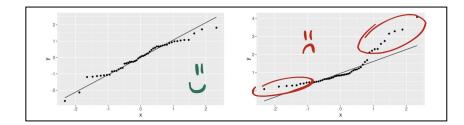
- ggplot(model) + stat_fitted_resid(alpha = 0.25)

Assumption #3: Independence

- Check by considering **how data was collected**
- If there's **independence**, knowing observation #1 gives no information about observation #2
 - Ex: If data was randomly sampled, then independence can be reasonably assumed
 - Ex: If data was collected within a family (and we're measuring blood sugar, e.g.), then independence might not apply. Why?

Assumption #4: Normality

- Check via **Q-Q plot**, which plots residuals against theoretical quantiles of **normal distribution**
 - If residuals were perfectly normally distributed, they'd exactly follow the diagonal
 - We're not looking for perfect—just make sure it's reasonable
- Points should have a linear relationship, with no breaks at tails



- ggplot(MODEL) + stat_normal_qq()
- ggplot(model) +
 stat_normal_qq(alpha = 0.25)

Returning to Inference: Population Model vs. Estimated Model

- **<u>Population model</u>**: $\mathbf{y} = \mathbf{B}_0 + \mathbf{B}_1 \mathbf{X}_1$
 - $+ \dots + B_p x_p + \varepsilon$
 - ε is error/"random noise" around the line (population parameter for the residuals)
 - $\epsilon \sim N(0, \sigma)$
 - B_k is population parameter

- **Estimated model**: $\hat{\mathbf{y}} = \hat{\mathbf{B}}_{0} + \hat{\mathbf{B}}_{1}\mathbf{x}_{1} + \dots + \hat{\mathbf{B}}_{p}\mathbf{x}_{p}$
 - This is what our "line of best fit" is
 - **Â**_k is estimate of the population parameter
 - ε "disappears" because the estimated model is a straight line

Inference in (Multiple) Regression: Hypothesis Tests

- The observed data is assumed to have been randomly sampled from a population where the explanatory variable (X) and the response variable (Y) follow a population model
 - **<u>Population model</u>**: $Y = B_0 + B_1X_1 + ... + B_pX_p + \varepsilon$
 - Like before, but we're now using capital letters to indicate **random variables**
 - **Estimated model**: $\hat{\mathbf{y}} = \hat{\mathbf{B}}_0 + \hat{\mathbf{B}}_1 \mathbf{x}_1 + \dots + \hat{\mathbf{B}}_p \mathbf{x}_p$
- Usually, we're concerned with **slope parameter** (B_k)
 - $H_0: B_k = o$ (i.e., there is no association between X_k and Y after controlling for all other predictors in the model)
 - $\mathbf{H}_{\mathbf{A}}: \mathbf{B}_{\mathbf{k}} \neq \mathbf{0}$ (i.e., there is an association between $X_{\mathbf{k}}$ and Y after controlling for all other predictors in the model)

Inference in (Multiple) Regression: Hypothesis Tests

- When assumptions are met (including 4 assumptions for multiple linear regression), then the *t*-statistic follows a *t*-distribution with degrees of freedom n p 1, where n is the number of cases and p is the number of predictors
 - $t = (\hat{B}_k B_k^o) / SE(\hat{B}_k)$

- Recall our null hypothesis is (often) $\mathbf{B}_{\mathbf{k}} = \mathbf{0}$, so the $\mathbf{B}_{\mathbf{k}}^{\mathbf{0}}$ term can go away

- $t = (\hat{B}_k) / SE(\hat{B}_k)$
- Our computers can calculate this for us!
 - get_regression_table(MODEL)
 - get_regression_table(model)

Inference in (Multiple) Regression: Confidence Intervals

- <u>Confidence interval</u>: Recall the form of a confidence interval is CI = sample statistic ± ME
- $\mathbf{CI} = \mathbf{\hat{B}}_{\mathbf{k}} \pm (\mathbf{t}^* \times \mathbf{SE}(\mathbf{\hat{B}}_{\mathbf{k}}))$
 - t* is the point on a \overline{t} -distribution with n p 1 degrees of freedom and $\alpha/2$ area to the right
 - "With {<u>α</u>}% confidence, an increase in {<u>explanatory variable</u>} by 1 unit is associated with a change in average {<u>response variable</u>} between {<u>lower bound</u>} and {<u>upper bound</u>} units when holding {<u>other explanatory variables in model</u>} constant."
 - *Ex:* With 95% confidence, statin users have an average RFFT score that is between 4.2 points lower to 5.9 points higher than non statin users when holding age constant. Here, x_k is categorical, so this is better interpreted as a difference in means.
- Our computers can calculate this for us (use get_regression_table())!

Confidence Interval vs. Prediction Interval

- <u>Confidence interval for mean</u>
 <u>response</u>: Tries to find plausible range for parameter
 - Centered at $\hat{\mathbf{y}}$, with smaller SE
 - Ex: We are 95% confident that the average price of 20 year-old, 1,500 square-feet Saratoga houses with central air and 2 bathrooms is between \$199,919 and \$211,834

- Prediction interval for individual response: Tries to find plausible range for a single, new observation
 - Centered at $\mathbf{\hat{y}}$, with larger SE
 - Ex: For a 20 year-old, 1,500 square-foot Saratoga house with central air and 2 bathrooms, we predict, with 95% confidence, the price will be between \$73,885 and \$337,869

Confidence Interval vs. Prediction Interval: Code

- OBSERVATION-OF-INTEREST <data.frame(EXPL-VAR(S) = VALUE(S))</pre>
- predict(MODEL, newdata =
 OBSERVATION-OF-INTEREST, interval
 = "confidence", level =

CONF-LEVEL)

- house_of_interest <data.frame(livingArea = 1500, age
 = 20, bathrooms = 2, centralAir =
 "yes")</pre>
- predict(model, house_of_interest, interval = "confidence", level = 0.95)

- OBSERVATION-OF-INTEREST <data.frame(EXPL-VAR(S) = VALUE(S))</pre>
- predict(MODEL, newdata =
 OBSERVATION-OF-INTEREST, interval
 - = "prediction", level =
 CONF-LEVEL)
 - house_of_interest < data.frame(livingArea = 1500, age
 = 20, bathrooms = 2, centralAir =
 "yes")</pre>
 - predict(model, house_of_interest, interval = "prediction", level = 0.95)

Two Types of Mult. Linear Regression: Equal-Slopes, Varying-Slopes

- <u>Equal-Slopes</u>: Assumes change in y associated with change in 1 explanatory variable—a.k.a. the slope—DOES NOT DEPEND on other explanatory variable(s) in model
 - Visually, we see equal slopes in the lines
- **Estimated model**: $\hat{\mathbf{y}} = \hat{\mathbf{B}}_0 + \hat{\mathbf{B}}_1 \mathbf{X}_1 + \hat{\mathbf{B}}_2 \mathbf{X}_2 + \dots + \hat{\mathbf{B}}_p \mathbf{X}_p$
 - We see there are no terms where the x variables interact with each other
- Code: <- lm(- + -, data = -)

- Varying-slopes model: Assumes change in y associated with change in 1 explanatory variable—a.k.a. the slope—DOES DEPEND on other explanatory variable(s) in model, so interaction term(s) is present
 - Visually, we see different slopes in the lines
- **Estimated model**: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1 + \hat{B}_2 x_2 + \hat{B}_3 x_1 x_2 + ... + \hat{B}_p x_p$ - We see there is an interaction term

between x_1 and x_2 : $\hat{B}_3 x_1 x_2$ - Code: - <- $lm(- \sim - * -, data = -)$

For houses, if I want to predict price based on living area and whether or not there's central air—now with a varying slopes model—what is p (number of predictors)?

Question:

For houses, if I want to predict price based on living area and whether or not there's central air—now with a varying slopes model—what is p (number of predictors)? We'll use linear regression (with varying-slopes) to model this relationship.

 $\hat{\mathbf{y}} = \mathbf{price}$

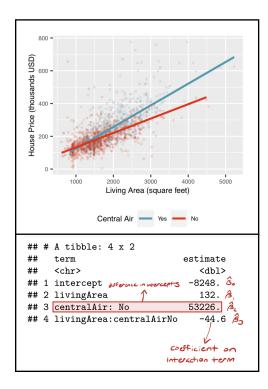
x₁ = living area (numerical)

x₂ = whether or not there's central air (categorical)

Thus, p = 2—like last time!

Example: Houses (But with Varying-Slopes)

- <u>Variables</u>: price $(\hat{\mathbf{y}})$, living area (\mathbf{x}_1) , whether or not there's central air (\mathbf{x}_2)
 - x_1 is numerical, x_2 is categorical
 - Baseline group is houses WITH central air
- **Estimated model**: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1 + \hat{B}_2 x_2 + \hat{B}_3 x_1 x_2$
 - $\frac{\text{Line when } \mathbf{x}_2 = \mathbf{o} \text{ (houses WITH central}}{\underline{\text{air}}; \hat{\mathbf{y}} = \hat{\mathbf{B}}_0 + \hat{\mathbf{B}}_1 \mathbf{x}_1}$
 - y-intercept = \hat{B}_0 , slope = \hat{B}_1
 - <u>Line when $x_2 = 1$ (houses WITHOUT</u> <u>central air</u>): $\hat{y} = (\hat{B}_0 + \hat{B}_2) + (\hat{B}_1 + \hat{B}_3)x_1$
 - **y-intercept** = $\hat{B}_0 + \hat{B}_2$, **slope** = $\hat{B}_1 + \hat{B}_2$
 - Notice the **slopes** are different!



Example: Houses (But with Varying-Slopes)

- <u>Variables</u>: price $(\hat{\mathbf{y}})$, living area (\mathbf{x}_1) , whether or not there's central air (\mathbf{x}_2)
 - x_1 is numerical, x_2 is categorical
 - Baseline group is houses WITH central air
- **Estimated model**: $\hat{y} = \hat{B}_0 + \hat{B}_1 x_1 + \hat{B}_2 x_2 + \hat{B}_3 x_1 x_2$
 - $\frac{1}{2} \frac{\text{Line when } \mathbf{x}_2 = \mathbf{o} \text{ (houses WITH central}}{\underline{\text{air}}}: \hat{\mathbf{y}} = \hat{\mathbf{B}}_0 + \hat{\mathbf{B}}_1 \mathbf{x}_1$
 - y-intercept = \hat{B}_0 , slope = \hat{B}_1
 - <u>Line when $x_2 = 1$ (houses WITHOUT</u> <u>central air</u>): $\hat{y} = (\hat{B}_0 + \hat{B}_2) + (\hat{B}_1 + \hat{B}_3)x_1$
 - **y-intercept** = $\hat{B}_0 + \hat{B}_2$, **slope** = $\hat{B}_1 + \hat{B}_2$
 - Notice the **slopes** are different!

- $\hat{\underline{B}}_{0}$: For houses with central air ($x_{2} = 0$), when living area (x_{1}) equals 0, the price (\hat{y}) is -\$8,248 ($\hat{\underline{B}}_{0}$), on average
 - **\hat{\underline{B}}_{1}:** For **houses with central air** ($\mathbf{x}_{2} = \mathbf{0}$), as **living area** (\mathbf{x}_{1}) increases by 1 unit, **price** ($\hat{\mathbf{y}}$) increases by **\$132** ($\hat{\mathbf{B}}_{1}$), on average
- $\hat{\mathbf{B}}_2$: When living area (\mathbf{x}_1) equals o, houses without central air $(\mathbf{x}_2 = 1) \operatorname{cost} \$53,226 \ (\hat{\mathbf{B}}_2)$ more than houses with central air $(\mathbf{x}_2 = 0)$, on average
- <u>B</u>: Houses without central air (x₂ = 1) have a lower slope than houses with central air by \$44.6/unit (B̂₃). For houses without central air (x₂ = 1), as living area (x₁) increases by 1 unit, price (ŷ) increases by \$87.4 (B̂₁ B̂₃), on average

The General "Formulas" for Varying-Slopes (When x₂ Is Categorical)

- $\hat{\mathbf{B}}_{0}$ is y-intercept of line when $\mathbf{x}_{2} = \mathbf{0}$
 - Ex: For houses with central air $(x_2 = 0)$, when living area (x_1) equals 0, the price (\hat{y}) is -\$8,248 (\hat{B}_0) , on average
- $\hat{\underline{B}}_1$ is slope of line when $x_2 = 0$
 - Ex: For houses with central air $(x_2 = 0)$, as living area (x_1) increases by 1 unit, price (\hat{y}) increases by \$132 (\hat{B}_1) , on average
- $\hat{B}_0 + \hat{B}_2$ is y-intercept of line when $x_2 = 1$ (houses without central air), so \hat{B}_2 is difference in y-intercepts between both lines ($b_{other} b_{baseline}$)
 - Ex: When living area (x_r) equals 0, houses without central air $(x_2 = 1) \cos (\hat{B}_2)$ more than houses with central air $(x_2 = 0)$, on average
- $\hat{B}_1 + \hat{B}_3$ is slope of line when $x_2 = 1$ (houses without central air), so \hat{B}_3 is difference in slopes between both lines ($m_{other} m_{baseline}$)
 - Ex: Houses without central air $(x_2 = 1)$ have a lower slope than houses with central air by \$44.6/unit (\hat{B}_3)

Inference with Varying-Slopes

- Same idea as before, but now we can infer about
 population interaction coefficient (B₃) instead of
 population slope coefficient (B₁)
 - $H_0: B_3 = o$ (i.e., association/slope between y and x_1 doesn't differ by category)
 - $H_A: B_3 \neq o$ (i.e., association/slope between y and x_1 differs by category)
- Again, our computers give us this info with get_regression_table()!

INFERENCE WITH INTERACTION

- Do our observed data suggest that the association between total cholesterol and age differs by diabetic status in the population?
- Conduct a hypothesis test for the slope of the interaction term, $H_0: \beta_3 = 0$ vs. $H_0: \beta_3 \neq 0$
- If the population-level association between total cholesterol and age were the same between diabetics and non-diabetics, there would only be a 0.019 probability of observing a difference in slopes of -0.032 or larger in magnitude.
- With 95% confidence, the average change in total cholesterol per 1 year increase in age for diabetics is between 0.005 to 0.06 units smaller than for non-diabetics.

get_regression_	_table(mod	_chol_int)	%>%
<pre>select(term,</pre>	estimate,	p_value)	

##	#	A tibble: 4 x 3		
##		term	estimate p_value	9
##		<chr></chr>	<dbl> <dbl></dbl></dbl>	•
##	1	intercept	4.77 0	
##	2	Age	0.01 0.001	L
##	3	Diabetes: Yes	1.54 0.074	ł
##	4	Age:DiabetesYes	-0.032 0.019)

get_regression_table(mod_chol_int) %>%
 select(term, estimate, lower_ci, upper_ci)

A tibble: 4 x 4

##		term	estimate	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	4.77	4.47	5.06
##	2	Age	0.01	0.004	0.016
##	3	Diabetes: Yes	1.54	-0.149	3.22
##	4	Age:DiabetesYes	-0.032	-0.06	-0.005

When should I use equal-slopes

vs. varying-slopes?

Question:

When should I use equal-slopes vs. varying-slopes?

Consider your goal with the model.

With varying-slopes, certain questions (like the average difference in cholesterol between diabetic groups, controlling for age) can't be answered.

With equal-slopes, certain questions (like whether or not the relationship/slope differs between groups) can't be answered.

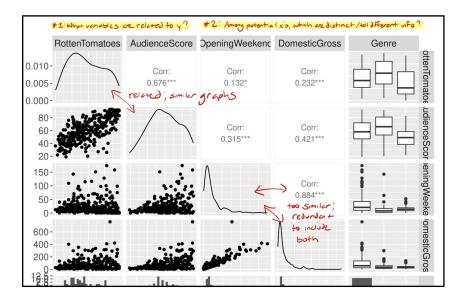
r²: Coefficient of Determination

- **<u>r</u>**²: Percent of **total variation** in y (**response variable**) explained by the **model**

- $\mathbf{r}^2 = (\mathbf{r})^2 = \operatorname{Var}(\mathbf{\hat{y}}_i) / \operatorname{Var}(\mathbf{y}_i)$
- If the **linear model** perfectly captured the **variability** in the observed data, then $Var(\hat{y}_i) = Var(y_i)$; thus, **r**² would be 1
- If r² is too low, try different model; however, r² only increases as new predictors are added to a model
- **<u>adj(r²)</u>**: Value of **r²** adjusted for size of model (penalizes too-large models)
 - $adj(r^2) = r^2 \times ((n 1)/(n p 1))$
 - n is sample size, p is number of predictors in model
- Basically, graph your data and pick the model with **highest adj(r**²)
 - glance(MODEL)
 - glance(model)

Model Building Guidance

- In addition to looking at adj(r²), consider your explanatory variables in the model
 - You want them to **explain different aspects** of the **response variable**
 - It would be redundant to have both RottenTomatoes and AudienceScore in a model, for example
- Use ggpair() to see relationship between multiple explanatory variables
 - If the graphs look alike, this tells you the **variables** are similar—consider removing one of them



Questions?

P-Set 8

Have a great rest of your week!