STAT 102: Week 11

Ricky's Section

Introductions and Attendance

Introduction: Name

<u>**Question of the Week</u>**: Were you able to do what you were looking forward to this semester (from Week 1)? If you don't remember, what is a highlight of your semester so far?</u>

Important Reminders

- This week, changed to Fri, 04/11 from 8 to 10
 PM
- Slack me if you have a question!

End of Class Events

- **ggparty** on Thursday, 05/01 from noon to 1:30 PM in Science Center 316
 - RSVP <u>here</u>!
- **Class Lunch** on Tuesday, 04/29 at noon
 - RSVP <u>here</u>!
- Classroom to Table (C2T) on Sunday, 04/13 from 10 to 11 AM at Pavement
 - RSVP <u>here</u>!

Content Review: Week 11

Linear Regression (In a Nutshell)

- Linear regression: Models the linear relationship between numerical response variable (y) and explanatory variables (x), which can be either numerical or categorical
 - For now, we'll focus on **simple linear regression**, which only has one **explanatory variable**
- The form of this model is $\hat{\mathbf{y}} = \hat{\mathbf{B}}_{0} + \hat{\mathbf{B}}_{1}\mathbf{x}$
 - Note: \hat{B} is supposed to represent beta hat $(\beta + \hat{})$
- The **coefficients** $(\hat{B}_0 \text{ and } \hat{B}_1)$ have different interpretations depending on whether x is **numerical** or **categorical**

Explanatory Variable: Numerical

- When x is **numerical...**
 - The model represents a "line of best fit"
 - \hat{B}_{o} is the **y-intercept**
 - When price percentage equals 0%, the average win percentage is 42%
 - \hat{B}_1 is the **slope**
 - As price percentage increases by 1%, the win percentage increases by 0.178%, on average
 - Least-squares regression finds the optimal values of \hat{B}_0 and \hat{B}_1 by minimizing residuals (errors)

Explanatory Variable: Binary Categorical

- When x is **binary categorical**...

- The model represents means (one for each of the two group)
- $\hat{\mathbf{B}}_{\mathbf{o}}$ is the mean of y in the **baseline** group (when x = 0)
 - For candy without chocolate, the average win percentage is 42.1%
- **Â**₁ is the difference in means of other group from baseline group
 - $(\bar{y}_{other} \bar{y}_{baseline})$
 - Candy with chocolate has a higher average win percentage than candy without chocolate by 18.8%

Linear Regression: Code

- **<u>Fitting the model</u>**: Use this to build your model
 - MODEL <- lm(Y-VAR ~ X-VAR, data = DATASET)</pre>
 - model <- lm(winpercent ~ pricepercent, data = candy)</pre>
- <u>**Getting the numbers**</u>: Use this to summarize your model
 - get_regression_table(MODEL)
 - get_regression_table(model)
- **<u>Predicting</u>**: Use this for your model to predict y-value of new instances
 - predict(MODEL, newdata = data.frame(Y-VAR = VALUE))
 - predict(model, newdata = data.frame(pricepercent = 85))

More on Linear Regression

- **Interpolation**: Predicting values that fall **within** a dataset (generally good)
- <u>Extrapolation</u>: Predicting values that fall **outside** an observed range (generally not good)
- **<u>Residual</u>**: Error in **observed y** versus **predicted y** (**positive residual** means model **underestimated**; **negative residual** means model **overestimated**)
 - $\mathbf{e}_{\mathbf{i}} = \mathbf{y}_{\mathbf{i}} \mathbf{\hat{y}}_{\mathbf{i}}$ (observed predicted)
- <u>Sample correlation coefficient (r)</u>: Measures strength of linear relationship between 2 numeric variables in a sample, ranging from -1 to 1
 - -1 is perfectly negative relationship
 - 1 is perfectly positive relationship

If r ranges from -1 to 1, what are the possible values for r²?

Question:

If r ranges from -1 to 1, what are the possible values for r²?

0-1!

As a result of squaring the numbers, r² can only take on non-negative values.

r²: Coefficient of Determination

- **<u>r</u>**²: Percent of **total variation** in y (**response variable**) explained by the **model**

- $\mathbf{r}^2 = (\mathbf{r})^2 = \operatorname{Var}(\mathbf{\hat{y}}_i) / \operatorname{Var}(\mathbf{y}_i)$
- If the **linear model** perfectly captured the **variability** in the observed data, then $Var(\hat{y}_i) = Var(y_i)$; thus, **r**² would be 1
- If r² is too low, try different model; however, r² only increases as new predictors are added to a model
- $adj(r^2)$: Value of r^2 adjusted for size of model (penalizes too-large models)
 - $adj(r^2) = r^2 \times ((n 1)/(n p 1))$
 - n is sample size, p is number of predictors in model
- Basically, graph your data and pick the model with **highest adj(r**²)
 - glance(MODEL)
 - glance(model)

The model predicts a y-value of 26 while the (actual) observed y-value is 30. What is the residual, and what does it mean?

Question:

The model predicts a y-value of 26 while the (actual) observed y-value is 30. What is the residual, and what does it mean? $\mathbf{e}_{\mathbf{i}} = \mathbf{y}_{\mathbf{i}} - \mathbf{\hat{y}}_{\mathbf{i}}$ (observed - predicted)

The **residual** is 4 (30 - 26). Thus, the model **underestimated** by 4.

Visually, the "line of best fit" is below the actual data point.

Population Model vs. Estimated Model

- **<u>Population model</u>**: $y = B_0 + B_1 x + \epsilon$
 - ε is error/"random noise" around the line (population parameter for the residuals)
 - $\epsilon \sim N(0, \sigma)$
 - B_o and B₁ are population parameters

- **Estimated model**: $\hat{\mathbf{y}} = \hat{\mathbf{B}}_{0} + \hat{\mathbf{B}}_{1}\mathbf{x}$
 - This is what our "line of best fit" is
 - \hat{B}_{0} and \hat{B}_{1} are estimates of the population parameters
 - ε "disappears" because the estimated model is a straight line

Where else have we seen "hats" (^) used to indicate estimates?

Question:

Where else have we seen "hats" (^) used to indicate estimates?

Inference!

Recall **p** (sample proportion) is used to estimate **p** (population proportion).

This is a common theme in statistics.

Influential Points

- <u>High leverage</u>: Points with unusual
 x-values relative to rest of data points
 - These points have a large effect on \hat{B}_0 and \hat{B}_1
- **Outliers**: Points with unusual **y-values** relative to their **x-values**
 - These points do not follow the general linear trend in the data
- Influential points: Points with a strong effect on \hat{B}_0 and \hat{B}_1 (when removed, these coefficients substantially change)
 - **Outliers** with **high leverage** are potentially **influential**

Assumptions for Linear Regression

- **<u>Linearity</u>**: The data shows a **linear** trend (thus, a linear model is appropriate)
- <u>Constant Variability</u>: The variability of the response variable about the line remains roughly constant as the explanatory variable changes
- **Independence**: Each observation is **independent** (i.e., value of one observation provide no information about value of others)
- **<u>Normality</u>**: The **residuals** (errors) are approximately **normally distributed**

Assumption #1: Linearity

- Check via residual plot,
 which plots residuals of
 model across domain
- If data is linear, points should scatter from y = o randomly, with no pattern

- ggplot(MODEL) + stat_fitted_resid()
- ggplot(model) + stat_fitted_resid(alpha = 0.25)

Assumption #2: Constant Variance

- Check via residual plot, which plots residuals of model across domain
- Vertical spread of points should be roughly constant across domain, with no "fanning"
 - This interpretation is different from linearity; here, cite the upper and lower bounds (in green) to show there is no "fanning"

- ggplot(MODEL) + stat_fitted_resid()

- ggplot(model) + stat_fitted_resid(alpha = 0.25)

Assumption #3: Independence

- Check by considering **how data was collected**
- If there's **independence**, knowing observation #1 gives no information about observation #2
 - Ex: If data was randomly sampled, then independence can be reasonably assumed
 - Ex: If data was collected within a family (and we're measuring blood sugar, e.g.), then independence might not apply. Why?

Assumption #4: Normality

- Check via **Q-Q plot**, which plots residuals against theoretical quantiles of **normal distribution**
 - If residuals were perfectly normally distributed, they'd exactly follow the diagonal
 - We're not looking for perfect—just make sure it's reasonable
- Points should have a linear relationship, with no breaks at tails

- ggplot(MODEL) + stat_normal_qq()
- ggplot(model) + stat_normal_qq(alpha = 0.25)

Inference in Regression: Hypothesis Tests

- The observed data (x_i, y_i) is assumed to have been randomly sampled from a population where the explanatory variable (X) and the response variable (Y) follow a population model
 - **<u>Population model</u>**: $\mathbf{Y} = \mathbf{B}_0 + \mathbf{B}_1 \mathbf{X} + \boldsymbol{\varepsilon}$
 - Like before, but we're now using capital letters to indicate random variables
 - **Estimated model**: $\hat{\mathbf{y}} = \hat{\mathbf{B}}_{0} + \hat{\mathbf{B}}_{1}\mathbf{x}$
- Usually, we're concerned with **slope parameter** (B₁)
 - $H_0: B_1 = o$ (i.e., the slope is zero, so there is no association between X and Y)
 - H_{A} : $B_{1} \neq o$ (i.e., the slope is non-zero, so there is some association between X and Y)

Inference in Regression: Hypothesis Tests

- When assumptions are met (including 4 assumptions for linear regression), then the *t* statistic follows a *t* distribution with degrees of freedom n 2, where n is the number of ordered pairs in the dataset
 - $t = (\hat{B}_1 B_1^o) / SE(\hat{B}_1)$
 - Recall our null hypothesis is (often) $\mathbf{B}_1 = \mathbf{0}$, so the \mathbf{B}_1^{0} term can go away
 - $t = (\hat{B}_1) / SE(\hat{B}_1)$
- Our computers can calculate this for us!
 - get_regression_table(MODEL)
 - get_regression_table(model)

Inference in Regression: Confidence Intervals

- <u>Confidence interval</u>: Recall the form of a confidence interval is CI = sample statistic ± ME
- $\mathbf{CI} = \mathbf{\hat{B}}_1 \pm (\mathbf{t}^* \times \mathbf{SE}(\mathbf{\hat{B}}_1))$
 - t* is the point on a t distribution with n 2 degrees of freedom and $\alpha/2$ area to the right
 - "We are {<u>α</u>}% confident B₁ is in the CI; that is, with {<u>α</u>}% confidence, an increase in {<u>explanatory variable</u>} by 1 unit is associated with a change in average {<u>response variable</u>} between {<u>lower bound</u>} and {<u>upper bound</u>} units."
 - Ex: With 95% confidence, an increase in age of one year is associated with a change in average RFFT score between (-1.44, -1.08) points; i.e., a decrease in average RFFT score between 1.08 to 1.44 points.
- Again, our computers can calculate this (use get_regression_table())!

Confidence Interval vs. Prediction Interval

- <u>Confidence interval for mean</u>
 <u>response</u>: Tries to find plausible range for parameter
 - Centered at $\boldsymbol{\hat{y}},$ with smaller SE
 - Ex: We are 95% confident that the average RFFT score for individuals who are 50 years old is between 72.27 and 76.69 points.

- Prediction interval for individual response: Tries to find plausible range for a single, new observation
 - Centered at $\mathbf{\hat{y}}$, with larger SE
 - Ex: For a 50-year-old individual, we predict, with 95% confidence, their RFFT score is between 28.87 and 120.10 points.

Confidence Interval vs. Prediction Interval: Code

- OBSERVATION-OF-INTEREST <data.frame(EXPL-VAR(S) = VALUE(S))</pre>
- predict(MODEL, newdata =
 OBSERVATION-OF-INTEREST, interval
 = "confidence", level =

CONF-LEVEL)

- house_of_interest <data.frame(livingArea = 1500, age
 = 20, bathrooms = 2, centralAir =
 "yes")</pre>
- predict(model, house_of_interest, interval = "confidence", level = 0.95)

- OBSERVATION-OF-INTEREST <data.frame(EXPL-VAR(S) = VALUE(S))</pre>
- predict(MODEL, newdata =
 OBSERVATION-OF-INTEREST, interval
 - = "prediction", level =
 CONF-LEVEL)
 - house_of_interest < data.frame(livingArea = 1500, age
 = 20, bathrooms = 2, centralAir =
 "yes")</pre>
 - predict(model, house_of_interest, interval = "prediction", level = 0.95)

Intuitively, why would there be more uncertainty (and thus a higher SE) in a prediction interval than in a confidence interval?

Question:

Intuitively, why would there be more uncertainty (and thus a higher SE) in a prediction interval than in a confidence interval? There are many factors (other than age) that go a person's RFFT score. Thus, **prediction** is highly variable.

Conversely, a **CI** tries to find a plausible range for a **parameter** (specifically, population mean). We're now thinking about a **population** rather than a **single observation**, and means "average out" with large numbers.

"Estimate" vs. "Statistic" in R

- **Estimate** is the **observed sample statistic** (i.e., the numeric quantity calculated with the data set)
 - Here, $\hat{B}_1 = 113$, so as living area increases by 1 unit, price increases by \$113, on average
- **<u>Statistic</u>** is the **standardized test statistic**

(i.e., z-score or *t*-score)

- Here, $\mathbf{t} = 42.2$, so the sample statistic of $\hat{B}_1 =$ 113 is 42.2 standard errors above what we'd expect if the null hypothesis were true (i.e., if $\beta_1 = 0$ so that there is no relationship between living area and price)

	#	A tibble:						
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	13439.	4992.	2.69	0.007	3648.	23231.
##	2	livingArea	113.	2.68	42.2	0	108.	118.

Questions?

Oral Exam Practice

Person A (Grade Q1 and Q3, Answer Q2 and Q4)

https://drive.google.com/file/d/1ERgZzTAQNe5y FNAolBaR2Rsq9KJwDZHq/view?usp=drive_link

Person B (Grade Q2 and Q4, Answer Q1 and Q3)

https://drive.google.com/file/d/1jId 2LFHrEiKidj J4lpz5ZfZh-lftSJW/view?usp=drive link

https://drive.google.com/file/d/1CGaWYmldVtuR bfEwTMKHqvfFR619P8qr/view?usp=drive_link

P-Set 7

Have a great rest of your week!