
STAT 102: Week 11
Ricky’s Section



Introductions and Attendance

Introduction: Name

Question of the Week: Were you able to do what 
you were looking forward to this semester (from 
Week 1)? If you don’t remember, what is a 
highlight of your semester so far?
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Important Reminders
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My Office Hours

- This week, changed to Fri, 04/11 from 8 to 10 
PM 

- Slack me if you have a question! 



End of Class Events

- ggparty on Thursday, 05/01 from noon to 1:30 PM in 
Science Center 316

- RSVP here! 
- Class Lunch on Tuesday, 04/29 at noon 

- RSVP here!
- Classroom to Table (C2T) on Sunday, 04/13 from 10 to 11 

AM at Pavement
- RSVP here!

https://docs.google.com/forms/d/e/1FAIpQLSe8MxAGkySzuL-UHp0TM0qQpEopnpcbBIAdFlyleZ24xMkpBw/viewform?usp=header
https://docs.google.com/forms/d/e/1FAIpQLSc9nV00HT0FTHyCthAhTbyjaS-itarnZWkbJ6FWrYI3OFTDkg/viewform
https://docs.google.com/forms/d/e/1FAIpQLSe8MxAGkySzuL-UHp0TM0qQpEopnpcbBIAdFlyleZ24xMkpBw/viewform?usp=header


Content Review: Week 11
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Linear Regression (In a Nutshell)

- Linear regression: Models the linear relationship between numerical 
response variable (y) and explanatory variables (x), which can be either 
numerical or categorical

- For now, we’ll focus on simple linear regression, which only has one explanatory variable
- The form of this model is ŷ = B̂0 + B̂1x

- Note: B̂ is supposed to represent beta hat (β + ˆ)
- The coefficients (B̂0 and B̂1) have different interpretations depending on 

whether x is numerical or categorical 

7



Explanatory Variable: Numerical

- When x is numerical…
- The model represents a “line of best 

fit”
- B̂0 is the y-intercept

- When price percentage equals 0%, the 
average win percentage is 42%

- B̂1 is the slope
- As price percentage increases by 1%, 

the win percentage increases by 
0.178%, on average

- Least-squares regression finds the 
optimal values of B̂0 and B̂1 by 
minimizing residuals (errors)
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Explanatory Variable: Binary Categorical

- When x is binary categorical… 
- The model represents means (one 

for each of the two group)
- B̂0 is the mean of y in the baseline 

group (when x = 0)
- For candy without chocolate, the 

average win percentage is 42.1%
- B̂1 is the difference in means of 

other group from baseline group 
(ȳother - ȳbaseline)

- Candy with chocolate has a higher 
average win percentage than candy 
without chocolate by 18.8%
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Linear Regression: Code

- Fitting the model: Use this to build your model
- MODEL <- lm(Y-VAR ~ X-VAR, data = DATASET)

- model <- lm(winpercent ~ pricepercent, data = candy)

- Getting the numbers: Use this to summarize your model
- get_regression_table(MODEL)

- get_regression_table(model)

- Predicting: Use this for your model to predict y-value of new instances
- predict(MODEL, newdata = data.frame(Y-VAR = VALUE))

- predict(model, newdata = data.frame(pricepercent = 85))

10



More on Linear Regression

- Interpolation: Predicting values that fall within a dataset (generally good)
- Extrapolation: Predicting values that fall outside an observed range 

(generally not good)
- Residual: Error in observed y versus predicted y (positive residual means 

model underestimated; negative residual means model overestimated)
- ei = yi - ŷi (observed - predicted)

- Sample correlation coefficient (r): Measures strength of linear relationship 
between 2 numeric variables in a sample, ranging from -1 to 1 

- -1 is perfectly negative relationship
- 1 is perfectly positive relationship
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If r ranges from 
-1 to 1, what are 
the possible 
values for r2?
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Question:
If r ranges from -1 to 1, what are 

the possible values for r2?

0-1!

As a result of squaring the 
numbers, r2 can only take on 
non-negative values.
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r2: Coefficient of Determination

- r2: Percent of total variation in y (response variable) explained by the model
- r2 = (r)2 = Var(ŷi)/Var(yi)
- If the linear model perfectly captured the variability in the observed data, then Var(ŷi) = 

Var(yi); thus, r2 would be 1
- If r2 is too low, try different model; however, r2 only increases as new predictors are added to 

a model
- adj(r2): Value of r2 adjusted for size of model (penalizes too-large models)

- adj(r2) = r2  × ((n - 1)/(n - p - 1))
- n is sample size, p is number of predictors in model

- Basically, graph your data and pick the model with highest adj(r2)
- glance(MODEL)

- glance(model)
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The model predicts a 
y-value of 26 while the 
(actual) observed y-value 
is 30. What is the residual, 
and what does it mean?
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Question:
The model predicts a y-value of 26 
while the (actual) observed y-value 

is 30. What is the residual, and 
what does it mean?

ei = yi - ŷi (observed - predicted)

The residual is 4 (30 - 26). Thus, the 
model underestimated by 4.

Visually, the “line of best fit” is 
below the actual data point.
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Population Model vs. Estimated Model

- Population model: y = B0 + B1x + 
ε

- ε is error/“random noise” 
around the line (population 
parameter for the 
residuals)

- ε ~ N(0, σ)
- B0 and B1 are population 

parameters
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- Estimated model: ŷ = B̂0 + B̂1x
- This is what our “line of best 

fit” is
- B̂0 and B̂1 are estimates of 

the population parameters
- ε “disappears” because the 

estimated model is a 
straight line



Where else have we 
seen “hats” (ˆ) used 
to indicate 
estimates?
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Question:
Where else have we seen “hats” 
(ˆ) used to indicate estimates?

Inference!

Recall p̂ (sample proportion) is 
used to estimate p (population 
proportion).

This is a common theme in 
statistics.
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Influential Points
- High leverage: Points with unusual 

x-values relative to rest of data points
- These points have a large effect on B̂0 and 

B̂1
- Outliers: Points with unusual y-values 

relative to their x-values
- These points do not follow the general 

linear trend in the data
- Influential points: Points with a strong 

effect on B̂0 and B̂1 (when removed, these 
coefficients substantially change)

- Outliers with high leverage are 
potentially influential
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Assumptions for Linear Regression

- Linearity: The data shows a linear trend (thus, a linear model is appropriate)
- Constant Variability: The variability of the response variable about the line 

remains roughly constant as the explanatory variable changes
- Independence: Each observation is independent (i.e., value of one 

observation provide no information about value of others)
- Normality: The residuals (errors) are approximately normally distributed
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Assumption #1: Linearity

- Check via residual plot, 
which plots residuals of 
model across domain

- If data is linear, points 
should scatter from y = 
0 randomly, with no 
pattern
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- ggplot(MODEL) + stat_fitted_resid()

- ggplot(model) + stat_fitted_resid(alpha 

= 0.25)



Assumption #2: Constant Variance

- Check via residual plot, which 
plots residuals of model across 
domain

- Vertical spread of points should 
be roughly constant across 
domain, with no “fanning”

- This interpretation is different from 
linearity; here, cite the upper and 
lower bounds (in green) to show 
there is no “fanning”
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- ggplot(MODEL) + stat_fitted_resid()

- ggplot(model) + stat_fitted_resid(alpha 

= 0.25)



Assumption #3: Independence

- Check by considering how data was collected
- If there’s independence, knowing observation #1 gives no 

information about observation #2
- Ex: If data was randomly sampled, then independence can be reasonably 

assumed
- Ex: If data was collected within a family (and we’re measuring blood sugar, 

e.g.), then independence might not apply. Why?
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Assumption #4: Normality

- Check via Q-Q plot, which plots 
residuals against theoretical 
quantiles of normal distribution

- If residuals were perfectly normally 
distributed, they’d exactly follow 
the diagonal

- We’re not looking for perfect—just 
make sure it’s reasonable

- Points should have a linear 
relationship, with no breaks at 
tails

25

- ggplot(MODEL) + stat_normal_qq()

- ggplot(model) + stat_normal_qq(alpha = 

0.25)



Inference in Regression: Hypothesis Tests

- The observed data (xi, yi) is assumed to have been randomly sampled from a 
population where the explanatory variable (X) and the response variable (Y) 
follow a population model

- Population model: Y = B0 + B1X + ε
- Like before, but we’re now using capital letters to indicate random variables

- Estimated model: ŷ = B̂0 + B̂1x
- Usually, we’re concerned with slope parameter (B1)

- H0: B1 = 0 (i.e., the slope is zero, so there is no association between X and Y)
- HA: B1 ≠ 0 (i.e., the slope is non-zero, so there is some association between X and Y)
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Inference in Regression: Hypothesis Tests

- When assumptions are met (including 4 assumptions for linear regression), 
then the t statistic follows a t distribution with degrees of freedom n − 2, 
where n is the number of ordered pairs in the dataset

- t = (B̂1 - B1
0)/SE(B̂1)

- Recall our null hypothesis is (often) B1 = 0, so the B1
0 term can go away

- t = (B̂1)/SE(B̂1)
- Our computers can calculate this for us!

- get_regression_table(MODEL)

- get_regression_table(model)
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Inference in Regression: Confidence Intervals

- Confidence interval: Recall the form of a confidence interval is CI = sample 
statistic ± ME

- CI = B̂1 ± (t* × SE(B̂1))
- t* is the point on a t distribution with n - 2 degrees of freedom and α/2 area to the right
- “We are {α}% confident B1 is in the CI; that is, with {α}% confidence, an increase in 

{explanatory variable} by 1 unit is associated with a change in average {response variable} 
between {lower bound} and {upper bound} units.”

- Ex: With 95% confidence, an increase in age of one year is associated with a change in average 
RFFT score between (-1.44, -1.08) points; i.e., a decrease in average RFFT score between 1.08 to 
1.44 points.

- Again, our computers can calculate this (use get_regression_table())!
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Confidence Interval vs. Prediction Interval

- Confidence interval for mean 
response: Tries to find plausible 
range for parameter

- Centered at ŷ, with smaller SE
- Ex: We are 95% confident that the 

average RFFT score for individuals 
who are 50 years old is between 72.27 
and 76.69 points.
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- Prediction interval for 
individual response: Tries to 
find plausible range for a single, 
new observation

- Centered at ŷ, with larger SE
- Ex: For a 50-year-old individual, we 

predict, with 95% confidence, their 
RFFT score is between 28.87 and 
120.10 points.



Confidence Interval vs. Prediction Interval: Code
- OBSERVATION-OF-INTEREST <- 

data.frame(EXPL-VAR(S) = VALUE(S))

- predict(MODEL, newdata = 

OBSERVATION-OF-INTEREST, interval 

= "confidence", level = 

CONF-LEVEL)
- house_of_interest <- 

data.frame(livingArea = 1500, age 

= 20, bathrooms = 2, centralAir = 

"yes")

- predict(model, house_of_interest, 

interval = "confidence", level = 

0.95)
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- OBSERVATION-OF-INTEREST <- 

data.frame(EXPL-VAR(S) = VALUE(S))

- predict(MODEL, newdata = 

OBSERVATION-OF-INTEREST, interval 

= "prediction", level = 

CONF-LEVEL)
- house_of_interest <- 

data.frame(livingArea = 1500, age 

= 20, bathrooms = 2, centralAir = 

"yes")

- predict(model, house_of_interest, 

interval = "prediction", level = 

0.95)



Intuitively, why would 
there be more uncertainty 
(and thus a higher SE) in a 
prediction interval than in 
a confidence interval?
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Question:
Intuitively, why would there be more 
uncertainty (and thus a higher SE) in 

a prediction interval than in a 
confidence interval?

There are many factors (other than 
age) that go a person’s RFFT score. 
Thus, prediction is highly variable.

Conversely, a CI tries to find a 
plausible range for a parameter 
(specifically, population mean). 
We’re now thinking about a 
population rather than a single 
observation, and means “average 
out” with large numbers.
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“Estimate” vs. “Statistic” in R
- Estimate is the observed sample statistic 

(i.e., the numeric quantity calculated with 
the data set)

- Here, B̂1 = 113, so as living area increases by 
1 unit, price increases by $113, on average

- Statistic is the standardized test statistic 
(i.e., z-score or t-score)

- Here, t = 42.2, so the sample statistic of B̂1 = 
113 is 42.2 standard errors above what we’d 
expect if the null hypothesis were true (i.e., if 
β1 = 0 so that there is no relationship 
between living area and price)



Questions?
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Oral Exam Practice
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Person A (Grade Q1 and Q3, Answer Q2 and Q4)

https://drive.google.com/file/d/1ERgZzTAQNe5y
FNA0lBaR2Rsq9KJwDZHq/view?usp=drive_link 
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https://drive.google.com/file/d/1ERgZzTAQNe5yFNA0lBaR2Rsq9KJwDZHq/view?usp=drive_link
https://drive.google.com/file/d/1ERgZzTAQNe5yFNA0lBaR2Rsq9KJwDZHq/view?usp=drive_link


Person B (Grade Q2 and Q4, Answer Q1 and Q3)

https://drive.google.com/file/d/1jId_2LFHrEiKidj
J4lpz5ZfZh-lftSJW/view?usp=drive_link 
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https://drive.google.com/file/d/1jId_2LFHrEiKidjJ4lpz5ZfZh-lftSJW/view?usp=drive_link
https://drive.google.com/file/d/1jId_2LFHrEiKidjJ4lpz5ZfZh-lftSJW/view?usp=drive_link


Solutions

https://drive.google.com/file/d/1CGaWYmldVtuR
bfEwTMKHqvfFR619P8qr/view?usp=drive_link 
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https://drive.google.com/file/d/1CGaWYmldVtuRbfEwTMKHqvfFR619P8qr/view?usp=drive_link
https://drive.google.com/file/d/1CGaWYmldVtuRbfEwTMKHqvfFR619P8qr/view?usp=drive_link


P-Set 7
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Have a great rest 
of your week!
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