STAT 102: Week 10

Ricky's Section

Introductions and Attendance

Introduction: Name

<u>**Question of the Week</u>**: If you could add one consistent item to HUDS, what would it be?</u>

Important Reminders

My Office Hours

- This week, changed to Sat, 04/05 from 2:30 to 4:30 PM
- Next week, changed to Fri, 04/11 from 8 to 10
 PM
- Slack me if you have a question!

Content Review: Week 10

A (Quick) Review of Probability and Random Variables

- **<u>Probability</u>**: A value between 0 and 1
- **<u>Random variable</u>**: An unknown value that "crystallizes" to a certain number AFTER an **experiment**
 - A **discrete r.v.** can crystallize to countable numbers *(ex: 1, 2, 3)*
 - A **continuous r.v.** can crystallize to any real number in an interval (*ex:* $-\sqrt{2}$, π , 102.74012...)
- <u>Probability distributions</u>: Functions that describe a r.v. through its probabilities
 - For **discrete r.v.s**, we use **PMFs**, which give the probability of the r.v. crystallizing to any specific number
 - For **continuous r.v.s**, we use **PDFs**, which are shapes whose area represents **probability** (thus giving the **probability** of the **r.v.** crystallizing to any number within a specific interval)

What is an example of a discrete r.v.? A continuous r.v.?

Question:

What is an example of a discrete r.v.? A continuous r.v.?

There are a bunch of different examples! The number of students in this room is **discrete** while a student's height is **continuous**.

Moving forward, we'll be working mostly with **continuous r.v.s** (because we're recasting our **sample statistics** as **continuous r.v.s**).

A (Quick) Review of Probability and Random Variables

- **<u>Normal r.v.</u>**: $X \sim N(\mu, \sigma)$
 - μ = mean, σ = SD
 - We use this for **proportions**
- **<u>Standard Normal r.v.</u>**: X ~ N(0, 1)
- <u>*t* r.v.</u>: X ~ t(df)
 - df = degrees of freedom
 - We use this for **means** and **linear regression**
- <u>Central Limit Theorem (CLT)</u>: For random samples and a large sample size, the sampling distribution of many sample statistics is approx. Normal
 - When assumptions are met, we can conduct **inference** using the **Normal distribution** as a good approximation

Null Distributions: Simulation-Based vs. Theory-based

A Visual Intuition for Central Limit Theorem

<u>https://drive.google.com/file/d/128kvCSzPjRL7N</u> <u>MTtDRYlPAAYo5RW7d3x/view?usp=drive_link</u>

Theory-Based Inference

- Let's recast our **sample statistics** as **random variables**
- According to the **CLT**, when **assumptions** are met...
 - $\hat{p} \sim N(p, \sqrt{\frac{p(1-p)}{n}})$, where p = population proportion
 - $\bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$, where μ = population mean and σ = population SD
- We often **standardize** our **sample statistic** to use **z-score** as our **test statistic**
 - This is because **Standard Normal dist.** is easy to use as our **Null dist.**
 - $\frac{X-\mu}{\sigma}$, where μ = population mean and σ = population SD

As a quick sanity check, why does it make sense to recast our sample statistics as random variables? Hint: Consider sampling variability and the "mystery box" intuition.

Question:

As a quick sanity check, why does it make sense to recast our sample statistics as random variables? Hint: Consider sampling variability and the "mystery box" intuition. Due to **sampling variability**, **sample statistics** often differ from one another. For example, if I survey 400 people, my p̂ would look different from yours if you surveyed 400 different people.

Thus, we can think of the **sample statistic** as a "mystery box" that will crystallize to a certain value after our sampling.

More on Test Statistic and Z-Score

- Up to now, we've been using our (observed) sample statistic as our test statistic
 - "The prob. we get our observed test stat. of 75% heads (or more extreme) is..."
- We can also use **z-score**, which is a standardized version of the **sample statistic**
 - *"The prob. we get a z-score of 2.4 (or more extreme) is..."*
 - It measures how many SDs the **sample statistic** is away from its **mean**
 - If sample statistic ~ $N(\mu, \sigma)$, then z-score ~ $N(\sigma, 1)$ (Standard Normal)

Standard Normal Distribution

A Visual Intuition for Standardizing

If $\hat{p} \sim N(15\%, 5\%)$ and I get a sample with $\hat{p} = 25\%$, what is its z-score, and what does it mean?

Question:

If $\hat{p} \sim N(15\%, 5\%)$ and I get a sample with $\hat{p} = 25\%$, what is its z-score, and what does it mean?

We're recasting our **sample** statistic (ĵ) as a continuous r.v.

We're given p̂ ~ N(15%, 5%). According to **CLT**, when assumptions are met, X ~ N(μ, σ). Thus, mean = 15%, and SD = 5%.

z-score = (X - μ)/σ, so z-score = 2. We see 25% is 2 SDs away from 15%.

Theory-Based Hypothesis Tests (for Proportions)

- According to CLT, under the H_0 , $\frac{\hat{p} \sim N(p_0, \sqrt{\frac{p_0(1-p_0)}{n}})}{n}$
 - Remember $\hat{p} \sim N(p, \sqrt{\frac{p(1-p)}{n}})$
- Our z-score (test statistic) follows a standard normal distribution
 - $Z \sim N(O, 1)$

- Remember z-score = $(X - \mu)/\sigma$

Theory-Based Confidence Intervals (for Proportions)

- A **CI** has the form of point estimate \pm (critical value \times SE)
 - Critical value is based on our desired confidence level
- According to CLT, $\hat{p} \sim N(p, \sqrt{\frac{p(1-p)}{n}})$
 - SE is $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- Thus, our CI (substituting in $\hat{\mathbf{p}}$ for \mathbf{p}) is $\hat{\mathbf{p}} \pm (\mathbf{z}^* \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}})$
 - **z*** is **critical value** in **norm. dist.**

For Means, We Have a Problem

- By **CLT**, $\frac{\bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})}{\sqrt{n}}$, but we don't know σ (population SD), so we replace it with **s** (sample SD)
- When we use $\frac{s}{\sqrt{n}}$ as our SD, our **standardized test statistic** will follow a *t* **distribution** with df = n 1 rather than N(o, 1)
 - Using the *t* distribution accounts for the extra variability introduced by using **s** as an estimate of σ
 - Our CI should be wider because we are now more uncertain

t distribution

For a t distribution, what happens as the degrees of freedoms increase?

Question:

For a t distribution, what happens as the degrees of freedoms increase? As **degrees of freedom** increase for a *t* distribution, it looks more like a normal distribution.

Intuitively, as **degrees of freedom** increase, there is less uncertainty, so it becomes more appropriate to use **normal distribution**.

What Are Degrees of Freedom?

- <u>Degrees of freedom</u>: The number of values in the final calculation of a statistic that are free to vary
- With n = 3, if I tell you that $\bar{x} = 10$, $x_1 = 5$, $x_2 = 15$, then what must x_3 be? $x_3 = 10!$
- Thus, the is no variability/independence in that last observation, so degrees of freedom is n 1

Theory-Based Hypothesis Tests (for Means)

- According to CLT, under the H_0 , $\frac{\bar{x} \sim N(\mu_0, \frac{\sigma}{\sqrt{n}})}{\sqrt{n}}$
 - Remember we don't have σ , so we replace it with s
- Thus, $\frac{\bar{x} \sim N(\mu_0, \frac{s}{\sqrt{n}})}{\sqrt{n}}$
- Now, our *t*-score (standardized test statistic) follows a *t* distribution
 - $t \sim t(df = n 1)$
- $t = \frac{\bar{x} \mu_0}{\frac{s}{\sqrt{n}}}$

- Remember z-score = $(X - \mu)/\sigma$... This is the *t* distribution analogue

Theory-Based Confidence Intervals (for Means)

- A CI has the form of point estimate \pm (critical value \times SE)
 - Critical value is based on our desired confidence level
- According to **CLT** and substituting in **s** for σ ,

$$\bar{x} \sim N(\mu, \frac{s}{\sqrt{n}})$$

- SE is $\frac{s}{\sqrt{n}}$
- Thus, our CI is $\overline{\mathbf{x} \pm (\mathbf{t}^* \times \frac{s}{\sqrt{n}})}$
 - **t*** is critical value in *t* **distribution**

The Important Functions for Normal Distribution

- pnorm(): Used to calculate probabilities on a normal distribution (often, for p-value during hypothesis test)
 - *Ex:* What is the **probability** a student scores an 1800 or less on the SAT if the scores are N(1500, 300)?
- pnorm(q = TEST-STAT, mean = MEAN, sd = STAN-DEV)
 - Ex: pnorm(q = 1800, mean = 1500, sd = 300) = 0.8413447
- qnorm(): Used to calculate quantiles on a normal distribution (often, for critical value during confidence interval)
 - Ex: What score on the SAT would put a student in the 99th quantile (percentile)?
- qnorm(p = QUANTILE, mean = MEAN, sd = STAN-DEV)

- Ex: qnorm(p = 0.99, mean = 1500, sd = 300) = 2197.904

The Important Functions for *t* distribution

- pt(): Used to calculate probabilities on a *t* distribution (often, for p-value during hypothesis test)
 - Ex: What is the **probability** a student scores a 3 or less on an exam if the scores are $\sim t(301 1)$?
- pt(q = TEST-STAT, df = DEGREES-OF-FREEDOM)

- Ex: pt(q = 3, df = 301 - 1) = 0.9985369

- qt(): Used to calculate quantiles on a *t* distribution (often, for critical value during confidence interval)
 - Ex: What score would put a student in the 99th **quantile** (percentile)?
- qt(p = QUANTILE, df = DEGREES-OF-FREEDOM)
 - Ex: qt(p = 0.99, df = 301 1) = 2.338842

Let's Recap

- Want **probability**?
 - Use pnorm(), pt()
 - This is often done for **p-value** in **hypothesis testing**
- Want **quantile** (i.e. percentile)?
 - Use qnorm(), qt()
 - This is often done to find z* or t* in confidence intervals

Important Code for Theory-Based Inference

https://drive.google.com/file/d/1I2_ySaupN7crU8 EwRVY1y_PFsfQP9nem/view?usp=drive_link

"Estimate" vs. "Statistic" in R

- **Estimate** is the **observed sample statistic** (i.e., the numeric quantity calculated with the data set)
 - Here, the dataset had a sample correlation coefficient of -0.398
- **<u>Statistic</u>** is the **standardized test statistic**
 - (i.e., z-score or *t*-score)
 - Here, that sample statistic is 7.07 standard errors below what we'd expect if the null hypothesis were true (i.e., if there is no correlation between age and vitamin D levels)
 - *Here, the standardized test statistic is a t-score that's distributed t(266)*

##	#	A tibble:	: 1 x 8						
##		estimate	statistic	p.value	parameter	conf.low	conf.high	method	alternative
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>
##	1	-0.398	-7.07	6.89e-12	266	-1	-0.309	Pearson'~	less

In the previous example, what values can "estimate" take on? What values can "statistic" take on?

Question:

In the previous example, what values can "estimate" take on? What values can "statistic" take on? "Estimate," as a sample correlation coefficient, can take on values in the interval [-1, 1].

"Statistic," as a *t*-score, can take on values in the interval (-∽, ∽).

Sample Size Calculation

- This is performed before collecting data to determine an appropriate sample size to gain desired precision for a CI
 - If my CI for average amount of sleep is between 1 and 23 hours, how helpful is that?
- CI = point estimate ± (critical value × SE), where margin of error = (critical value × SE)
 - For proportions, margin of error = $\mathbf{z}^* \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
 - For means, margin of error = $\mathbf{t}^* \times \frac{s}{\sqrt{n}}$
- We want our **margin of error** to be no larger than **B**, a bound
 - For proportions, $z * \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le B \implies \frac{(z*)^2 \hat{p}(1-\hat{p})}{B^2} \le n$
 - For means, $t * \times \frac{s}{\sqrt{n}} \le B \implies \frac{(st*)^2}{B^2} \le n$

Questions?

P-Set 6

Have a great rest of your week!