
STAT 102 - Important Code for Data Wrangling

Logical Operators in R

- & - “And”
- | - “Or”
- == - “Equal to”
- != - “Not equal to”
- %in% - “In”

Wrangling Verbs

- %>% - Takes dataset to the left and “pipes” it as the first argument in the next line (since
the first argument of most wrangling verbs is a dataset)

- colleges %>%
rename(SAT = sat_avg_2013)

- <- - Assigns/defines a new dataset (or variable or model) to the LEFT using information
from the right

- colleges_updated <- colleges
- filter() - Gets specific rows/observations

- thanksgiving <- flights %>%
filter(month == 11)

- select() - Gets specific variables/columns
- thanksgiving <- flights %>%

select(year)
- mutate() - Modifies existing variables and/or create new ones

- When defining a new variable, for it to stay in the dataset, you must assign
the dataset to itself at the beginning (as shown below)

- hpi <- hpi %>%
mutate(LogFootprint = log(Footprint))

- case_when() - Uses logical conditions to mutate() a variable, setting it to the value to the
RIGHT of the tilda if the statement to the LEFT is true

- mutate(seniority_new = case_when(
seniority <= 2 ~ "junior",
seniority == 3 ~ "mid",
seniority >= 4 ~ "senior"))

- hpi <- hpi %>%
mutate(Classification = case_when(

LifeExpectancy >= 72.27 ~ "Above or Equal to Average",
LifeExpectancy < 72.27 ~ "Below to Average"))

- rename() - Renames variable, where new name is the the LEFT of equal sign
- rename(INCOME = FINCBTAX)

- summarize() - Allows for use of summary functions, such as mean(), sd(), cor(), IQR(),
and n(), which can be set equal to new variables

- summarize(mean_INCOME = mean(INCOME),
mean_IRAX = mean(IRAX),
households = n())

- n() - Provides a count, which can be useful after a group_by() with a certain variable
- hpi %>%

group_by(Classification) %>%
summarize(count = n())

- group_by() - Groups data by variable(s), allowing for contingency/proportions
- mythbusters %>%

group_by(group, yawned) %>%
summarize(count = n()) %>%
mutate(prop = count / sum(count))

- SaratogaHouses %>%
count(waterfront) %>%
mutate(prop = n/sum(n))

- arrange() - Sorts the data based on values of a certain variable (when paired with desc(),
arranges the data in descending order of the variable)

- glassdoor %>%
group_by(education, gender) %>%
summarize(median_pay = median(pay)) %>%
arrange(desc(median_pay))

- na.omit() - Removes all rows/observations with a single missing value for any variable
(most aggressive way to deal with missing values)

- colleges_aggressive_removal <- colleges %>%
na.omit()

- drop_na() - Removes rows/observations with missing values for specific variable(s)
(moderately aggressive way to deal with missing values)

- colleges_moderate_removal <- colleges %>%
drop_na(sticker_price_2013)

- na.rm = TRUE - Only temporarily ignores N/A as needed before calculating, without
removing any rows/observations (least aggressive way to deal with missing values)

- colleges_light_removal <- colleges %>%
mutate(mean_sticker_price_2013 = mean(sticker_price_2013, na.rm =
TRUE))

- factor() - Converts seemingly-numerical variable to a categorical variable
- ggplot(Pollster08, aes(x = Days, y = Margin, color = factor(Charlie)))

- c() - Concatenates 2 or more values into 1, which is necessary when a function only
accepts 1 input

- bootstrap_dist <- movies %>%
filter(Genre %in% c("Drama", "Action"))

- slice_max() - Filters for n rows/observations with the highest values for a certain
variable (this may result in more rows/observations than specified in the case of ties)

- glassdoor %>%
drop_na(pay) %>%
filter(gender == "Female", jobtitle == "Software Engineer") %>%
slice_max(pay, n = 10) %>%
select(pay, education)

- fct_relevel() - Manually reorders the factor levels of a categorical variable
- glassdoor %>%

drop_na(pay) %>%
filter(gender == "Female", jobtitle == "Financial Analyst") %>%
mutate(pay = pay/1000, education = factor(education)) %>%
mutate(education = fct_relevel(education, "High School", "College"))
%>%

ggplot(aes(y = pay, x = education)) +
geom_boxplot()

