
Final Review
Ricky Truong



Final

- Written Component: Thur, 05/15 from 2 to 5 
PM

- Oral Component: Over Zoom BEFORE (10 
minute sessions)

- You all got this! 🙂
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Logistics and Disclaimer

- This will be half lecture/content review (by 
Ricky and Tino) and half hands-on practice 
(by Sarah and Maggie)

- We couldn’t fit every detail from the into 2 
hours, so these are the main/important ideas!

- We don’t know what the exam looks like!



Pre-Midterm Material

- We’ll touch on some concepts pre-midterm, but the focus 
of this will be post-midterm

- Slides from Midterm Review: 
https://drive.google.com/file/d/1R0-Jw30YOg5et9TGaCWhLqteb5AaJ7S6/
view?usp=drive_link

https://drive.google.com/file/d/1R0-Jw30YOg5et9TGaCWhLqteb5AaJ7S6/view?usp=drive_link
https://drive.google.com/file/d/1R0-Jw30YOg5et9TGaCWhLqteb5AaJ7S6/view?usp=drive_link


Before we start, what 
topics do you want me to 
spend the most time 
covering? 



Content Review: Week 9



Foundations of Probability

- Probability: A value between 0 and 1 (intuitively, a “long-term frequency”)
- Naive probability is all favorable outcomes / all possible outcomes
- Ex: Probability of getting dealt an ace is 4/52 = 0.077

- Outcome: Result after conducting an experiment
- Ex: After the experiment, I get dealt the ace of hearts

- Sample space: Set of all possible outcomes of experiment
- Ex: There are 52 cards I could’ve been dealt

- Event: Collection of outcomes
- Ex: The event I get dealt an ace is the collection of 4 specific outcomes
- If A = the event I get dealt an ace, then P(A) = 0.077
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Recapping Our Toolkit: Notes

- Union: P(A ∪ B) = P(A) + P(B) - P(A ∩ B)
- For disjoint events, P(A ∪ B) = P(A) + P(B) because P(A ∩ B) = 0

- Intersection: P(A ∩ B) = P(A) P(B | A) = P(B) P(A | B)
- For independent events, P(A ∩ B) = P(A) P(B) because P(A | B) = P(A)

- Complement Rule: P(A) = 1 - P(AC), P(A | B) = 1 - P(AC | B)
- Use when you see “at least” (e.g., “Find the probability of rolling a 5+ at least once in 3 rolls”)

- Def. of Conditional Probability: P(A | B) = P(A ∩ B) / P(B)
- Bayes’ Rule: P(A | B) = P(B | A) P(A) / P(B)
- LOTP: P(A) = P(A | B) P(B) + P(A | BC) P(BC)

- Use for wishful thinking (e.g., “I really wish I knew which factory the cone came from”)
- In general with probability, start by defining events
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One More Probability!

- Positive predictive value (PPV): In a diagnostic test, the probability that a 
person has the disease, given that they tested positive for it (true positive)

- PPV = P(D | T+), where D is event of having disease and T+ is event of testing 
positive
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What are the 2 main tools 
for finding unconditional 
probability, such as P(A)?
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Question:
What are the 2 main tools for finding 

unconditional probability, such as 
P(A)?

Complement rule and LOTP.

We often use complement for “at 
least” (e.g., “Find the probability of 
rolling a 5+ at least once in 3 rolls”).

We often use LOTP for “wishful 
thinking” (e.g., “I really wish I knew 
which factory the cone came 
from”).
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Every upperclassman has a 
probability p of buying a 
scooter. If they live in the Quad, 
p = 1/10. Otherwise, p = 1/20. I 
want to find the probability a 
randomly selected 
upperclassman buys a scooter. 
What tool should I use?



Question:
Every upperclassman has a probability p of 

buying a scooter. If they live in the Quad, p = 
1/10. Otherwise, p = 1/20. I want to find the 

probability a randomly selected upperclassman 
buys a scooter. What tool should I use?

LOTP (since “I wish” I knew 
whether or not they’re in the 
Quad)! Let B be the event they buy a 
scooter and Q be the event they’re 
in the Quad.

P(B) = P(B | Q) P(Q) + P(B | QC) P(QC) 
by LOTP. P(B) = (1/10)(3/12) + 
(1/20)(9/12) = 0.0625.



Random Variables

- Random variable: A function that maps each event in the 
sample space to a number

- Intuitively, think of a r.v. as an unknown value that 
“crystallizes” to a certain number AFTER an experiment
- Ex: X is a r.v. for the number of heads I get after flipping 10 coins. X could 

be 0, 1, …, or 10. After the experiment, it “crystallizes” to one of those 
numbers.
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A Silly (but Helpful) Intuition for Random Variables

- Think of random variables as 
mystery boxes in Mario Kart

- It’s unknown what it will 
crystallize to, but we can still 
describe the random variable 
with probabilities

- For example, there’s a pretty low 
probability this random variable will 
crystallize to a bullet bill
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Probability Distributions

- Probability distributions: Functions that give probabilities of all possible 
outcomes for a r.v.

- Intuitively, it describes a r.v. through its probabilities
- We can learn a lot about a r.v. by its probability distribution

- For discrete r.v.s, we use Probability Mass Functions (PMFs)
- f(x) = P(X = xi)
- “Probability of big X (r.v.) crystallizing to little x (a certain value)”

- For continuous r.v.s, we use Probability Density Functions (PDFs)
- f(x), where P(a ≤ X ≤ b) = ∫a

b f(x)dx
- For continuous r.v.s, the probability of X crystallizing to a certain value is 0, so we’re 

concerned with X crystallizing to any value within some interval
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PDFs for Continuous Random Variables

- Continuous r.v.s are trickier 
because the probability X 
crystallizes to any one value is 0

- PDF: f(x), where P(a ≤ X ≤ b) = ∫a
b 

f(x)dx
- Intuitively and visually, think of 

PDF as a shape whose area 
represents probability

- Thus, the area of the entire shape is 1
- f(x) evaluated at any certain point is NOT 

probability; here, probability is AREA
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Special Types of Random Variables

- The really important types of r.v.s (which show up often) have names
- If your r.v. matches the “story” of a named random r.v., it makes your life 

easier
- X ~ Name(Value(s) of Key Parameter(s))

- Ex: X ~ Bin(100, 0.10) is read as “X is distributed binomial with parameters 100 and 10” 
- Parameters: Named r.v.s are families, so parameters specify the distribution 

with a certain shape/center/spread
- Ex: X ~ Bin(100, 0.10) is different from Y ~ Bin(100, 0.50)
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More on the “Mystery Box” Example…

- This r.v. can crystallize to any 
real number between 0 and 1 
with equal probability

- So this r.v. is “distributed Unif(0, 1)”
- That r.v. can crystallize to only 0 

or 1, where it crystallizes to 1 
with probability p; otherwise, it 
will crystallize to 0

- So this r.v. is “distributed Bern(p)”



One More Thing…

- = and ~ are DIFFERENT
- X = 1 says the r.v. X crystallizes 

to the value of 1
- Recall this is a specific event, so we 

can calculate P(X = 1)
- X ~ Bern(0.5) says the r.v. X is 

distributed Bernoulli with p = 
0.5

- Even if two r.v.s are identically 
distributed, they can still be 
different

- Ex: X ~ Bin(10, 0.5) and Y ~ Bin(10, 
0.5) are identically distributed, but 
they can crystallize to different values

- Imagine X counts the number of heads 
in 10 coin flips while Y counts the 
number of tails



Normal Distribution

- Normal distribution: A 
symmetric and unimodal “bell 
shape” that approximates many 
distributions

- N(μ, σ) has 2 parameters
- μ is mean
- σ is standard deviation

- Z(0, 1) is Standard Normal
- 0 is mean
- 1 is standard deviation
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Standardizing and Z-Scores

- Standardizing: Transforming 
normal r.v. (X) into standard 
normal r.v. (Z)

- Comparing in terms of Z-scores 
(standard deviations) is easier

- Z-score: Measure of how many 
SDs the sample statistic is away 
from its mean

- Z-score = (X - μ) / σ 
- Z-score for test statistic = (statistic - 

μ) / σ

22



The Important Functions for Normal Distribution

- pnorm(): Used to calculate probabilities on a Normal distribution (often, for 
p-value during hypothesis test)

- Ex: What is the probability a student scores an 1800 on the SAT if the scores are N(1500, 300)?
- pnorm(q = TEST-STAT, mean = MEAN, sd = STAN-DEV) 

- Ex: pnorm(q = 1800, mean = 1500, sd = 300) = 0.8413447
- qnorm(): Used to calculate quantiles on a Normal distribution (often, for 

critical value during confidence interval)
- Ex: What score on the SAT would put a student in the 99th quantile (percentile)?

- qnorm(p = QUANTILE, mean = MEAN, sd = STAN-DEV) 
- Ex: qnorm(p = 0.99, mean = 1500, sd = 300) = 2197.904
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Why Does Any of This Matter?

- Central Limit Theorem (CLT): For random samples and 
a large sample size, the sampling distribution of many 
sample statistics is approximately distributed Normal 

- Thus, when assumptions are met, we can conduct inference using the 
Normal distribution as a good approximation

- We will revisit inference next week through this lens!

24



Content Review: Week 10
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Null Distributions: Simulation-Based vs. Theory-based
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A Visual Intuition for Central Limit Theorem

https://drive.google.com/file/d/128kvCSzPjRL7N
MTtDRYlPAAY05RW7d3x/view?usp=drive_link 

https://drive.google.com/file/d/128kvCSzPjRL7NMTtDRYlPAAY05RW7d3x/view?usp=drive_link
https://drive.google.com/file/d/128kvCSzPjRL7NMTtDRYlPAAY05RW7d3x/view?usp=drive_link


Theory-Based Inference

- Let’s recast our sample statistics as random variables
- According to the CLT, when assumptions are met…

-  p̂ ~ N(p,    , where p = population proportion
- x̄ ~ N(μ) , where μ = population mean and σ = population SD

- We often standardize our sample statistic to use z-score 
as our test statistic

- This is because Standard Normal dist. is easy to use as our Null dist.
- z-score = , where μ = population mean and σ = population SD
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As a quick sanity check, why 
does it make sense to recast our 
sample statistics as random 
variables? Hint: Consider 
sampling variability and the 
“mystery box” intuition.



Question:
As a quick sanity check, why does it make sense 

to recast our sample statistics as random 
variables? Hint: Consider sampling variability 

and the “mystery box” intuition.

Due to sampling variability, 
sample statistics often differ from 
one another. For example, if I 
survey 400 people, my p̂ would look 
different from yours if you 
surveyed 400 different people.

Thus, we can think of the sample 
statistic as a “mystery box” that will 
crystallize to a certain value after 
our sampling.



More on Test Statistic and Z-Score

- Up to now, we’ve been using our (observed) sample 
statistic as our test statistic
- “The prob. we get our observed test stat. of 75% heads (or more extreme) is…”

- We can also use z-score, which is a standardized version 
of the sample statistic
- “The prob. we get a z-score of 2.4 (or more extreme) is…”
- It measures how many SDs the sample statistic is away from its mean
- If sample statistic ~ N(μ, σ), then z-score ~ N(0, 1) (Standard Normal)
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Standard Normal Distribution
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A Visual Intuition for Standardizing



If p̂ ~ N(15%, 5%) and I get 
a sample with p̂ = 25%, 
what is its z-score, and 
what does it mean?
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Question:
If p̂ ~ N(15%, 5%) and I get a 

sample with p̂ = 25%, what is its 
z-score, and what does it mean?

We’re recasting our sample 
statistic (p̂) as a continuous r.v.

We’re given p̂ ~ N(15%, 5%). 
According to CLT, when 
assumptions are met, X ~ N(μ, σ). 
Thus, mean = 15%, and SD = 5%.

z-score = (X - μ)/σ, so z-score = 2. 
We see 25% is 2 SDs away from 15%.
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Theory-Based Hypothesis Tests (for Proportions)

- According to CLT, under the H0, p̂ ~ N(         )
- Remember p̂ ~ N(p, √(

- Our z-score (test statistic) follows a standard normal 
distribution

- z ~ N(0, 1)
- z = ( .

- Remember z-score = (X - μ)/σ
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Theory-Based Confidence Intervals (for Proportions)

- A CI has the form of point estimate ± (critical value × SE)
- Critical value is based on our desired confidence level

- According to CLT, p̂ ~ N(p,   .
- SE is √(p(1.

- Thus, our CI (substituting in p̂ for p) is p̂ ± (z* × √((p̂( )
- z* is critical value in norm. dist. 
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For Means, We Have a Problem

- By CLT, x̄ ~ N(μ,, but we don’t know σ (population SD), so 
we replace it with s (sample SD)

- When we use — as our SD, our standardized test statistic 
will follow a t distribution with df = n − 1 rather than N(0, 
1)

- Using the t distribution accounts for the extra variability introduced by 
using s as an estimate of σ

- Our CI should be wider because we are now more uncertain
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t distribution
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For a t distribution, 
what happens as 
the degrees of 
freedoms increase?
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Question:
For a t distribution, what 
happens as the degrees of 

freedoms increase?

As degrees of freedom increase for 
a t distribution, it looks more like a 
normal distribution. 

Intuitively, as degrees of freedom 
increase, there is less uncertainty, 
so it becomes more appropriate to 
use normal distribution.
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What Even Are Degrees of Freedom?

- Degrees of freedom: The number of values in the final 
calculation of a statistic that are free to vary

- With n = 3, if I tell you that x̄ = 10, x1 = 5, x2 = 15, then what 
must x3 be? x3 = 10!

- Thus, the is no variability/independence in that last 
observation, so degrees of freedom is n - 1



Theory-Based Hypothesis Tests (for Means)

- According to CLT, under the H0, x̄ ~ N( /.)
- Remember we don’t have σ, so we replace it with s

- Thus, x̄ ~ N(ss.
- Now, our t-score (standardized test statistic) follows a t 

distribution
- t ~ t(df = n - 1)

- t = (=
- Remember z-score = (X - μ)/σ… This is the t distribution analogue
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Theory-Based Confidence Intervals (for Means)

- A CI has the form of point estimate ± (critical value × SE)
- Critical value is based on our desired confidence level

- According to CLT and substituting in s for σ, x̄ ~ .N—.
- SE is

- Thus, our CI is x̄ ± (t* ×     )
- t* is critical value in t distribution
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The Important Functions for Normal Distribution

- pnorm(): Used to calculate probabilities on a normal distribution (often, for 
p-value during hypothesis test)

- Ex: What is the probability a student scores an 1800 or less on the SAT if the scores are N(1500, 
300)?

- pnorm(q = TEST-STAT, mean = MEAN, sd = STAN-DEV) 
- Ex: pnorm(q = 1800, mean = 1500, sd = 300) = 0.8413447

- qnorm(): Used to calculate quantiles on a normal distribution (often, for 
critical value during confidence interval)

- Ex: What score on the SAT would put a student in the 99th quantile (percentile)?
- qnorm(p = QUANTILE, mean = MEAN, sd = STAN-DEV) 

- Ex: qnorm(p = 0.99, mean = 1500, sd = 300) = 2197.904
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The Important Functions for t distribution

- pt(): Used to calculate probabilities on a t distribution (often, for p-value 
during hypothesis test)

- Ex: What is the probability a student scores a 3 or less on an exam if the scores are ~ t(301 - 1)?
- pt(q = TEST-STAT, df = DEGREES-OF-FREEDOM) 

- Ex: pt(q = 3, df = 301 - 1) = 0.9985369

- qt(): Used to calculate quantiles on a t distribution (often, for critical value 
during confidence interval)

- Ex: What score would put a student in the 99th quantile (percentile)?
- qt(p = QUANTILE, df = DEGREES-OF-FREEDOM)

- Ex: qt(p = 0.99, df = 301 - 1) = 2.338842
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Let’s Recap

- Want probability?
- Use pnorm(), pt()
- This is often done for p-value in hypothesis testing

- Want quantile (i.e. percentile)?
- Use qnorm(), qt()
- This is often done to find z* or t* in confidence 

intervals
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Important Code for Theory-Based Inference

https://drive.google.com/file/d/1I2_ySaupN7crU8
EwRVY1y_PFsfQP9nem/view?usp=drive_link 
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https://drive.google.com/file/d/1I2_ySaupN7crU8EwRVY1y_PFsfQP9nem/view?usp=drive_link
https://drive.google.com/file/d/1I2_ySaupN7crU8EwRVY1y_PFsfQP9nem/view?usp=drive_link


“Estimate” vs. “Statistic” in R
- Estimate is the observed sample statistic 

(i.e., the numeric quantity calculated with 
the data set)

- Here, the dataset had a sample correlation 
coefficient of -0.398

- Statistic is the standardized test statistic 
(i.e., z-score or t-score)

- Here, that sample statistic is 7.07 standard 
errors below what we’d expect if the null 
hypothesis were true (i.e., if there is no 
correlation between age and vitamin D 
levels)

- Here, the standardized test statistic is a 
t-score that’s distributed t(266)



In the previous example, 
what values can 
“estimate” take on? What 
values can “statistic” take 
on?



Question:
In the previous example, what values 
can “estimate” take on? What values 

can “statistic” take on?

“Estimate,” as a sample correlation 
coefficient, can take on values in 
the interval [-1, 1].

“Statistic,” as a t-score, can take on 
values in the interval (-∞, ∞).



Sample Size Calculation

- This is performed before collecting data to determine an appropriate 
sample size to gain desired precision for a CI

- If my CI for average amount of sleep is between 1 and 23 hours, how helpful is that?
- CI = point estimate ± (critical value × SE), where margin of error = (critical 

value × SE)
- For proportions, margin of error = z* ×
- For means, margin of error = t* ×

- We want our margin of error to be no larger than B, a bound
- For proportions, sssssdjknaduwbfqwfw
- For means, t* × (s/√n) ≤ B .
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Content Review: Week 11
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Linear Regression (In a Nutshell)

- Linear regression: Models the linear relationship between numerical 
response variable (y) and explanatory variables (x), which can be either 
numerical or categorical

- For now, we’ll focus on simple linear regression, which only has one explanatory variable
- The form of this model is ŷ = B̂0 + B̂1x

- Note: B̂ is supposed to represent beta hat (β + ˆ)
- The coefficients (B̂0 and B̂1) have different interpretations depending on 

whether x is numerical or categorical 
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Explanatory Variable: Numerical

- When x is numerical…
- The model represents a “line of best 

fit”
- B̂0 is the y-intercept

- When price percentage equals 0%, the 
average win percentage is 42%

- B̂1 is the slope
- As price percentage increases by 1%, 

the win percentage increases by 
0.178%, on average

- Least-squares regression finds the 
optimal values of B̂0 and B̂1 by 
minimizing residuals (errors)
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Explanatory Variable: Binary Categorical

- When x is binary categorical… 
- The model represents means (one 

for each of the two group)
- B̂0 is the mean of y in the baseline 

group (when x = 0)
- For candy without chocolate, the 

average win percentage is 42.1%
- B̂1 is the difference in means of 

other group from baseline group 
(ȳother - ȳbaseline)

- Candy with chocolate has a higher 
average win percentage than candy 
without chocolate by 18.8%
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Linear Regression: Code

- Fitting the model: Use this to build your model
- MODEL <- lm(Y-VAR ~ X-VAR, data = DATASET)

- model <- lm(winpercent ~ pricepercent, data = candy)

- Getting the numbers: Use this to summarize your model
- get_regression_table(MODEL)

- get_regression_table(model)

- Predicting: Use this for your model to predict y-value of new instances
- predict(MODEL, newdata = data.frame(Y-VAR = VALUE))

- predict(model, newdata = data.frame(pricepercent = 85))
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More on Linear Regression

- Interpolation: Predicting values that fall within a dataset (generally good)
- Extrapolation: Predicting values that fall outside an observed range 

(generally not good)
- Residual: Error in observed y versus predicted y (positive residual means 

model underestimated; negative residual means model overestimated)
- ei = yi - ŷi (observed - predicted)

- Sample correlation coefficient (r): Measures strength of linear relationship 
between 2 numeric variables in a sample, ranging from -1 to 1 

- -1 is perfectly negative relationship
- 1 is perfectly positive relationship
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The model predicts a y-value of 
26 while the (actual) observed 
y-value is 30. What is the 
residual, and what does it 
mean? Hint: ei = observed - 
predicted.
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Question:
The model predicts a y-value of 26 while the 
(actual) observed y-value is 30. What is the 
residual, and what does it mean? Hint: ei = 

observed - predicted.

ei = yi - ŷi (observed - predicted)

The residual is 4 (30 - 26). Thus, the 
model underestimated by 4.

Visually, the “line of best fit” is 
below the actual data point.
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Population Model vs. Estimated Model

- Population model: y = B0 + B1x + 
ε

- ε is error/“random noise” 
around the line (population 
parameter for the 
residuals)

- ε ~ N(0, σ)
- B0 and B1 are population 

parameters
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- Estimated model: ŷ = B̂0 + B̂1x
- This is what our “line of best 

fit” is
- B̂0 and B̂1 are estimates of 

the population parameters
- ε “disappears” because the 

estimated model is a 
straight line



Where else have we 
seen “hats” (ˆ) used 
to indicate 
estimates?
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Question:
Where else have we seen “hats” 
(ˆ) used to indicate estimates?

Inference!

Recall p̂ (sample proportion) is 
used to estimate p (population 
proportion).

This is a common theme in 
statistics.
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Assumptions for Linear Regression

- Linearity: The data shows a linear trend (thus, a linear model is appropriate)
- Constant Variability: The variability of the response variable about the line 

remains roughly constant as the explanatory variable changes
- Independence: Each observation is independent (i.e., value of one 

observation provide no information about value of others)
- Normality: The residuals (errors) are approximately normally distributed
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Assumption #1: Linearity

- Check via residual plot, 
which plots residuals of 
model across domain

- If data is linear, points 
should scatter from y = 
0 randomly, with no 
pattern
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- ggplot(MODEL) + stat_fitted_resid()

- ggplot(model) + stat_fitted_resid(alpha 

= 0.25)



Assumption #2: Constant Variance

- Check via residual plot, which 
plots residuals of model across 
domain

- Vertical spread of points should 
be roughly constant across 
domain, with no “fanning”

- This interpretation is different from 
linearity; here, cite the upper and 
lower bounds (in green) to show 
there is no “fanning”
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- ggplot(MODEL) + stat_fitted_resid()

- ggplot(model) + stat_fitted_resid(alpha 

= 0.25)



Assumption #3: Independence

- Check by considering how data was collected
- If there’s independence, knowing observation #1 gives no 

information about observation #2
- Ex: If data was randomly sampled, then independence can be reasonably 

assumed
- Ex: If data was collected within a family (and we’re measuring blood sugar, 

e.g.), then independence might not apply. Why?
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Assumption #4: Normality

- Check via Q-Q plot, which plots 
residuals against theoretical 
quantiles of normal distribution

- If residuals were perfectly normally 
distributed, they’d exactly follow 
the diagonal

- We’re not looking for perfect—just 
make sure it’s reasonable

- Points should have a linear 
relationship, with no breaks at 
tails
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- ggplot(MODEL) + stat_normal_qq()

- ggplot(model) + stat_normal_qq(alpha = 

0.25)



Inference in Regression: Hypothesis Tests

- The observed data (xi, yi) is assumed to have been randomly sampled from a 
population where the explanatory variable (X) and the response variable (Y) 
follow a population model

- Population model: Y = B0 + B1X + ε
- Like before, but we’re now using capital letters to indicate random variables

- Estimated model: ŷ = B̂0 + B̂1x
- Usually, we’re concerned with slope parameter (B1)

- H0: B1 = 0 (i.e., the slope is zero, so there is no association between X and Y)
- HA: B1 ≠ 0 (i.e., the slope is non-zero, so there is some association between X and Y)
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Inference in Regression: Hypothesis Tests

- When assumptions are met (including 4 assumptions for linear regression), 
then the t statistic follows a t distribution with degrees of freedom n − 2, 
where n is the number of ordered pairs in the dataset

- t = (B̂1 - B1
0)/SE(B̂1)

- Recall our null hypothesis is (often) B1 = 0, so the B1
0 term can go away

- t = (B̂1)/SE(B̂1)
- Our computers can calculate this for us!

- get_regression_table(MODEL)

- get_regression_table(model)
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Inference in Regression: Confidence Intervals

- Confidence interval: Recall the form of a confidence interval is CI = sample 
statistic ± ME

- CI = B̂1 ± (t* × SE(B̂1))
- t* is the point on a t distribution with n - 2 degrees of freedom and α/2 area to the right
- “We are {α}% confident B1 is in the CI; that is, with {α}% confidence, an increase in 

{explanatory variable} by 1 unit is associated with a change in average {response variable} 
between {lower bound} and {upper bound} units.”

- Ex: With 95% confidence, an increase in age of one year is associated with a change in average 
RFFT score between (-1.44, -1.08) points; i.e., a decrease in average RFFT score between 1.08 to 
1.44 points.

- Again, our computers can calculate this (use get_regression_table())!
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Confidence Interval vs. Prediction Interval

- Confidence interval for mean 
response: Tries to find plausible 
range for parameter

- Centered at ŷ, with smaller SE
- Ex: We are 95% confident that the 

average RFFT score for individuals 
who are 50 years old is between 72.27 
and 76.69 points.
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- Prediction interval for 
individual response: Tries to 
find plausible range for a single, 
new observation

- Centered at ŷ, with larger SE
- Ex: For a 50-year-old individual, we 

predict, with 95% confidence, their 
RFFT score is between 28.87 and 
120.10 points.



Confidence Interval vs. Prediction Interval: Code
- OBSERVATION-OF-INTEREST <- 

data.frame(EXPL-VAR(S) = VALUE(S))

- predict(MODEL, newdata = 

OBSERVATION-OF-INTEREST, interval 

= "confidence", level = 

CONF-LEVEL)
- house_of_interest <- 

data.frame(livingArea = 1500, age 

= 20, bathrooms = 2, centralAir = 

"yes")

- predict(model, house_of_interest, 

interval = "confidence", level = 

0.95)
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- OBSERVATION-OF-INTEREST <- 

data.frame(EXPL-VAR(S) = VALUE(S))

- predict(MODEL, newdata = 

OBSERVATION-OF-INTEREST, interval 

= "prediction", level = 

CONF-LEVEL)
- house_of_interest <- 

data.frame(livingArea = 1500, age 

= 20, bathrooms = 2, centralAir = 

"yes")

- predict(model, house_of_interest, 

interval = "prediction", level = 

0.95)



“Estimate” vs. “Statistic” in R
- Estimate is the observed sample statistic 

(i.e., the numeric quantity calculated with 
the data set)

- Here, B̂1 = 113, so as living area increases by 
1 unit, price increases by $113, on average

- Statistic is the standardized test statistic 
(i.e., z-score or t-score)

- Here, t = 42.2, so the sample statistic of B̂1 = 
113 is 42.2 standard errors above what we’d 
expect if the null hypothesis were true (i.e., if 
β1 = 0 so that there is no relationship 
between living area and price)



Content Review: Week 12



Introducing Multiple Linear Regression

- Multiple linear regression: Models the linear relationship between 
numerical response variable (y) and multiple explanatory variables (x1, x2, 
…, xp), which can be either numerical or categorical

- The form of this model is ŷ = B̂0 + B̂1x1 + … + B̂pxp
- Note: B̂ is supposed to represent beta hat (β + ˆ)

- B̂k (coefficient of predictor xk) is predicted mean change in y (response 
variable) corresponding to 1 unit change in xk when all other predictors are 
held constant

- If xk is numerical, think of slope
- If xk is categorical, think of difference in means (of group where xk = 1 from baseline group)
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For houses, if I want to 
predict price based on 
living area and whether or 
not there’s central air, 
what is p (number of 
predictors)?
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Question:
For houses, if I want to predict price 
based on living area and whether or 

not there’s central air, what is p 
(number of predictors)?

We’ll use linear regression to model 
this relationship.

ŷ = price

x1 = living area (numerical)

x2 = whether or not there’s central 
air (categorical)

Thus, p = 2.
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Example: Houses
- Variables: price (ŷ), living area (x1), 

whether or not there’s central air (x2)
- x1 is numerical, x2 is categorical
- Baseline group is houses WITH central air

- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2
- Line when x2 = 0 (houses WITH central 

air): ŷ = B̂0 + B̂1x1
- y-intercept = B̂0, slope = B̂1

- Line when x2 = 1 (houses WITHOUT 
central air): ŷ = (B̂0 + B̂2) + B̂1x1

- y-intercept = B̂0 + B̂2, slope = B̂1
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Example: Houses
- Variables: price (ŷ), living area (x1), 

whether or not there’s central air (x2)
- x1 is numerical, x2 is categorical
- Baseline group is houses WITH central air

- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2
- Line when x2 = 0 (houses WITH central 

air): ŷ = B̂0 + B̂1x1
- y-intercept = B̂0, slope = B̂1

- Line when x2 = 1 (houses WITHOUT 
central air): ŷ = (B̂0 + B̂2) + B̂1x1

- y-intercept = B̂0 + B̂2, slope = B̂1
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- Since we have multiple variables, be 
careful interpreting the coefficients

- B̂0: For houses with central air (x2 = 0), 
when living area (x1) equals 0, the price (ŷ) 
is $42,595 (B̂0), on average

- B̂1: Controlling for central air (x2), as 
living area (x1) increases by 1 unit, price 
(ŷ) increases by $107 (B̂1), on average

- B̂2: Controlling for living area (x1), houses 
without central air (x2 = 0) cost $28,451 
(B̂2) less than houses with central air (x2 = 
1), on average



The General “Formulas” for Equal-Slopes (When x2 Is Categorical)

- B̂0 is y-intercept of line when x2 = 0
- Ex: For houses with central air (x2 = 0), when living area (x1) equals 0, the price (ŷ) is $42,595 

(B̂0), on average
- Since this is equal-slopes, B̂1 is slope of both lines (a.k.a. increase in ŷ after 

1-unit increase in x1, controlling for x2)
- Ex: Controlling for central air (x2), as living area (x1) increases by 1 unit, price (ŷ) increases by 

$107 (B̂1), on average
- B̂0 + B̂2 is y-intercept of line x2 = 1, so B̂2 is difference in ŷ between both lines 

(ŷother - ŷbaseline), controlling for x1
- Ex: Controlling for living area (x1), houses without central air (x2 = 0) cost $28,451 (B̂2) less than 

houses with central air (x2 = 1), on average
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Looking at the 
tibble, how can we 
tell what’s the 
baseline group?
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Question:
Looking at the tibble, how can 

we tell what’s the baseline 
group?

Remember the baseline group is 
when xk = 0 for some categorical 
predictor xk.

Things are relative to the baseline 
group, so the tibble presents the 
“change” with the categorical 
predictor (to xk = 1 from xk = 0).

Thus, the baseline group is the 
OPPOSITE of the group shown.
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Baseline Group

The output tells us “centralAir: No” 
has an estimate of -28,451. Thus, 
“centralAir: Yes” (a.k.a. houses WITH 
central air) is our baseline group.
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Categorical Variables with 2+ Categories

- Linear regression can accommodate categorical variables with 2+ 
categories

- Ex: We can predict RFFT score with the categorical variable of education, which can be “Lower 
Secondary,” “Higher Secondary,” or “University”

- When x is a categorical variable with k + 1 categories…
- B̂0 represents the mean of y in the baseline group (one of those k + 1 categories)
- B̂k represents the difference in means—specifically, going from x = 0 (baseline group) to x = 

k (one of the other groups)
- Thus, B̂k = ȳgroup k -  ȳbaseline

- We can confirm our answers with some data wrangling
- Let’s look at an example…
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Assumptions for (Multiple) Linear Regression

- Linearity: For each predictor variable xk , the change in the predictor is 
linearly related to change in the response variable when the values of all 
other predictors are held constant

- Constant Variability: The residuals (errors) have approximately constant 
variance

- Independence: Each observation is independent (i.e., value of one 
observation provide no information about value of others)

- Normality: The residuals (errors) are approximately normally distributed
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Assumption #1: Linearity

- Check via “residual vs. 
predictor” plot with ggplot()

- For each numerical predictor, plot 
the residuals on the y-axis and the 
predictor values on the x-axis

- If data is linear, points should 
scatter from y = 0 randomly, 
with no pattern
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- ggplot(MODEL, aes(y = .resid, x = NUM-PREDICTOR) + geom_point() + 
geom_hline(yintercept = 0)

- Ex: ggplot(mod_rfft, aes(y = .resid, x = Age)) + geom_point(alpha = 
0.5, col = "cornflowerblue") + geom_hline(yintercept = 0, lty = 2, 
col = "red") + labs(y =  "Residuals", x = "Age", title = "Residuals 
vs. Age Plot")



Assumption #2: Constant Variability

- Check via residual plot, which 
plots residuals of model across 
domain

- Vertical spread of points should 
be roughly constant across 
domain, with no “fanning”

- This interpretation is different from 
linearity; here, cite the upper and 
lower bounds (in green) to show 
there is no “fanning”
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- ggplot(MODEL) + stat_fitted_resid()

- Ex: ggplot(model) + 

stat_fitted_resid(alpha = 0.25)



Assumption #3: Independence

- Check by considering how data was collected
- If there’s independence, knowing observation #1 gives no 

information about observation #2
- Ex: If data was randomly sampled, then independence can be reasonably 

assumed
- Ex: If data was collected within a family (and we’re measuring blood sugar, 

e.g.), then independence might not apply. Why?
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Assumption #4: Normality
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- ggplot(MODEL) + stat_normal_qq()

- Ex: ggplot(model) + 

stat_normal_qq(alpha = 0.25)

- Check via Q-Q plot, which plots 
residuals against theoretical 
quantiles of normal distribution

- If residuals were perfectly normally 
distributed, they’d exactly follow 
the diagonal

- We’re not looking for perfect—just 
make sure it’s reasonable

- Points should have a linear 
relationship, with no breaks at 
tails



Returning to Inference: Population Model vs. Estimated Model

- Population model: y = B0 + B1x1 
+ … + Bpxp + ε

- ε is error/“random noise” 
around the line (population 
parameter for the 
residuals)

- ε ~ N(0, σ)
- Bk is population parameter
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- Estimated model: ŷ = B̂0 + B̂1x1 + 
… + B̂pxp

- This is what our “line of best 
fit” is

- B̂k is estimate of the 
population parameter

- ε “disappears” because the 
estimated model is a 
straight line



Inference in (Multiple) Regression: Hypothesis Tests

- The observed data is assumed to have been randomly sampled from a 
population where the explanatory variable (X) and the response variable (Y) 
follow a population model

- Population model: Y = B0 + B1X1 + … + BpXp + ε
- Like before, but we’re now using capital letters to indicate random variables

- Estimated model: ŷ = B̂0 + B̂1x1 + … + B̂pxp

- Usually, we’re concerned with slope parameter (Bk)
- H0: Bk = 0 (i.e., there is no association between Xk and Y after controlling for all other 

predictors in the model)
- HA: Bk ≠ 0 (i.e., there is an association between Xk and Y after controlling for all other 

predictors in the model)
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Inference in (Multiple) Regression: Hypothesis Tests

- When assumptions are met (including 4 assumptions for multiple linear 
regression), then the t-statistic follows a t-distribution with degrees of 
freedom n − p - 1, where n is the number of cases and p is the number of 
predictors

- t = (B̂k - Bk
0)/SE(B̂k)

- Recall our null hypothesis is (often) Bk = 0, so the Bk
0 term can go away

- t = (B̂k)/SE(B̂k)
- Our computers can calculate this for us!

- get_regression_table(MODEL)

- Ex: get_regression_table(model)
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Inference in (Multiple) Regression: Confidence Intervals

- Confidence interval: Recall the form of a confidence interval is CI = sample 
statistic ± ME

- CI = B̂k ± (t* × SE(B̂k))
- t* is the point on a t-distribution with n−p-1 degrees of freedom and α/2 area to the right
- “With {α}% confidence, an increase in {explanatory variable} by 1 unit is associated with a 

change in average {response variable} between {lower bound} and {upper bound} units 
when holding {other explanatory variables in model} constant.”

- Ex: With 95% confidence, statin users have an average RFFT score that is between 4.2 points lower 
to 5.9 points higher than non statin users when holding age constant. Here, xk is categorical, so this 
is better interpreted as a difference in means.

- Again, our computers can calculate this for us (use 
get_regression_table())!
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Confidence Interval vs. Prediction Interval

- Confidence interval for mean 
response: Tries to find plausible 
range for parameter

- Centered at ŷ, with smaller SE
- Ex: We are 95% confident that the 

average price of 20 year-old, 1,500 
square-feet Saratoga houses with 
central air and 2 bathrooms is 
between $199,919 and $211,834
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- Prediction interval for 
individual response: Tries to 
find plausible range for a single, 
new observation

- Centered at ŷ, with larger SE
- Ex: For a 20 year-old, 1,500 

square-foot Saratoga house with 
central air and 2 bathrooms, we 
predict, with 95% confidence, the price 
will be between $73,885 and $337,869



Confidence Interval vs. Prediction Interval: Code
- OBSERVATION-OF-INTEREST <- 

data.frame(EXPL-VAR(S) = VALUE(S))

- predict(MODEL, newdata = 

OBSERVATION-OF-INTEREST, interval 

= "confidence", level = 

CONF-LEVEL)
- Ex: house_of_interest <- 

data.frame(livingArea = 1500, age 

= 20, bathrooms = 2, centralAir = 

"yes")

- predict(model, house_of_interest, 

interval = "confidence", level = 

0.95)
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- OBSERVATION-OF-INTEREST <- 

data.frame(EXPL-VAR(S) = VALUE(S))

- predict(MODEL, newdata = 

OBSERVATION-OF-INTEREST, interval 

= "prediction", level = 

CONF-LEVEL)
- Ex: house_of_interest <- 

data.frame(livingArea = 1500, age 

= 20, bathrooms = 2, centralAir = 

"yes")

- predict(model, house_of_interest, 

interval = "prediction", level = 

0.95)



Two Types of Mult. Linear Regression: Equal-Slopes, Varying-Slopes
- Equal-Slopes: Assumes change in y 

associated with change in 1 explanatory 
variable—a.k.a. the slope—DOES NOT 
DEPEND on other explanatory variable(s) 
in model

- Visually, we see equal slopes in the lines
- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2 + … 

+ B̂pxp
- We see there are no terms where the x 

variables interact with each other
- Code: — <- lm(— ~ — + —, data = —)
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- Varying-slopes model: Assumes change 
in y associated with change in 1 
explanatory variable—a.k.a. the 
slope—DOES DEPEND on other 
explanatory variable(s) in model, so 
interaction term(s) is present

- Visually, we see different slopes in the 
lines

- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2 + 
B̂3x1x2 + … + B̂pxp

- We see there is an interaction term 
between x1 and x2: B̂3x1x2

- Code: — <- lm(— ~ — * —, data = —)



For houses, if I want to predict 
price based on living area and 
whether or not there’s central 
air—now with a varying slopes 
model—what is p (number of 
predictors)?
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Question:
For houses, if I want to predict price based on 
living area and whether or not there’s central 

air—now with a varying slopes model—what is p 
(number of predictors)?

We’ll use linear regression (with 
varying-slopes) to model this 
relationship.

ŷ = price

x1 = living area (numerical)

x2 = whether or not there’s central 
air (categorical)

Thus, p = 2—like last time!
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Example: Houses (But with Varying-Slopes)
- Variables: price (ŷ), living area (x1), 

whether or not there’s central air (x2)
- x1 is numerical, x2 is categorical
- Baseline group is houses WITH central air

- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2 + 
B̂3x1x2

- Line when x2 = 0 (houses WITH central 
air): ŷ = B̂0 + B̂1x1

- y-intercept = B̂0, slope = B̂1
- Line when x2 = 1 (houses WITHOUT 

central air): ŷ = (B̂0 + B̂2) + (B̂1 + B̂3)x1
- y-intercept = B̂0 + B̂2, slope = B̂1 + 

B̂3
- Notice the slopes are different!
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Example: Houses (But with Varying-Slopes)
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- B̂0: For houses with central air (x2 = 0), when 
living area (x1) equals 0, the price (ŷ) is -$8,248 
(B̂0), on average

- B̂1: For houses with central air (x2 = 0), as living 
area (x1) increases by 1 unit, price (ŷ) increases by 
$132 (B̂1), on average

- B̂2: When living area (x1) equals 0, houses 
without central air (x2 = 1) cost $53,226 (B̂2) more 
than houses with central air (x2 = 0), on average

- B̂3: Houses without central air (x2 = 1) have a 
lower slope than houses with central air by 
$44.6/unit (B̂3). For houses without central air (x2 
= 1), as living area (x1) increases by 1 unit, price 
(ŷ) increases by $87.4 (B̂1 - B̂3), on average

- Variables: price (ŷ), living area (x1), 
whether or not there’s central air (x2)

- x1 is numerical, x2 is categorical
- Baseline group is houses WITH central air

- Estimated model: ŷ = B̂0 + B̂1x1 + B̂2x2 + 
B̂3x1x2

- Line when x2 = 0 (houses WITH central 
air): ŷ = B̂0 + B̂1x1

- y-intercept = B̂0, slope = B̂1
- Line when x2 = 1 (houses WITHOUT 

central air): ŷ = (B̂0 + B̂2) + (B̂1 + B̂3)x1
- y-intercept = B̂0 + B̂2, slope = B̂1 + 

B̂3
- Notice the slopes are different!



The General “Formulas” for Varying-Slopes (When x2 Is Categorical)
- B̂0 is y-intercept of line when x2 = 0

- Ex: For houses with central air (x2 = 0), when living area (x1) equals 0, the price (ŷ) is -$8,248 (B̂0), on average
- B̂1 is slope of line when x2 = 0

- Ex: For houses with central air (x2 = 0), as living area (x1) increases by 1 unit, price (ŷ) increases by $132 (B̂1), on 
average

- B̂0 + B̂2 is y-intercept of line when x2 = 1 (houses without central air), so B̂2 is difference in 
y-intercepts between both lines (bother - bbaseline)

- Ex: When living area (x1) equals 0, houses without central air (x2 = 1) cost $53,226 (B̂2) more than houses with 
central air (x2 = 0), on average

- B̂1 + B̂3 is slope of line when x2 = 1 (houses without central air), so B̂3 is difference in slopes between 
both lines (mother - mbaseline)

- Ex: Houses without central air (x2 = 1) have a lower slope than houses with central air by $44.6/unit (B̂3)
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Inference with Varying-Slopes

- Same idea as before, but now we can infer about 
population interaction coefficient (B3) instead of 
population slope coefficient (B1)

- H0: B3 = 0 (i.e., association/slope between y and x1 doesn’t differ by 
category)

- HA: B3 ≠ 0 (i.e., association/slope between y and x1 differs by category)
- Again, our computers give us this info with 

get_regression_table()!
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When should I 
use equal-slopes 
vs. 
varying-slopes?
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Question:
When should I use equal-slopes 

vs. varying-slopes?

Consider your goal with the model. 

With varying-slopes, certain 
questions (like the average 
difference in cholesterol between 
diabetic groups, controlling for age) 
can’t be answered.

With equal-slopes, certain 
questions (like whether or not the 
relationship/slope differs between 
groups) can’t be answered.
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If r ranges from 
-1 to 1, what are 
the possible 
values for r2?
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Question:
If r ranges from -1 to 1, what are 

the possible values for r2?

0-1!

As a result of squaring the 
numbers, r2 can only take on 
non-negative values.

109



r2: Coefficient of Determination

- r2: Percent of total variation in y (response variable) explained by the model
- r2 = (r)2 = Var(ŷi)/Var(yi)
- If the linear model perfectly captured the variability in the observed data, then Var(ŷi) = 

Var(yi); thus, r2 would be 1
- If r2 is too low, try different model; however, r2 only increases as new predictors are added to 

a model
- adj(r2): Value of r2 adjusted for size of model (penalizes too-large models)

- adj(r2) = r2  × ((n - 1)/(n - p - 1))
- n is sample size, p is number of predictors in model

- Basically, graph your data and pick the model with highest adj(r2)
- glance(MODEL)

- Ex: glance(model)
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Model Building Guidance
- In addition to looking at adj(r2), consider 

your explanatory variables in the model
- You want them to explain different 

aspects of the response variable
- It would be redundant to have both 

RottenTomatoes and AudienceScore in a 
model, for example

- Use ggpair() to see relationship between 
multiple explanatory variables

- If the graphs look alike, this tells you the 
variables are similar—consider removing 
one of them
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Content Review: Week 13
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Big Picture Overview

- We introduce 3 (+2) more tools in our inference toolkit
- These are extensions of things we’ve seen before

- Paired t-test
- ANOVA
- Chi-squared

- Also…
- Fisher’s exact test
- Effect size in 2x2 tables
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An Introduction to Pairing

- Two-sample numerical data can be paired or unpaired (i.e., independent)
- Thus far, we’ve been working with unpaired

- Observations cannot be matched on a one-to-one
- Ex: Considering SAT scores for students who studied versus students who did not, we can’t match 

Alice, who studied, with Bob, who didn’t—they’re completely different people!
- Now, let’s consider studies with paired measurements

- Each observation can be logically matched to another observation in the data
- Ex: Considering SAT scores for a group of 10 students before and after studying, we’re matching 

Alice’s old score with her new score
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If we want to measure the 
effect of new wetsuits on 
swimmers, should we 
have paired data or 
unpaired data?
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Question:
If we want to measure the effect of 
new wetsuits on swimmers, should 

we have paired data or unpaired 
data?

While both strategies could work, 
this research question might be 
best answered with a paired study.

It’d be better to keep our swimmers 
consistent (since everyone has their 
own velocity, generally). Thus, our 
data can be paired “before and 
after.”
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Paired t-test: Example

- 12 swimmers had their velocity measured using an (old) swimsuit and using a 
(new) wetsuit

- These are paired data (e.g., swimmer 1 swimsuit can be matched with swimmer 1 wetsuit)
- Conducting a non-paired t-test (what we’ve done before), we get x̄swimsuit - 

x̄wetsuit = 0.0775 m/s, with a p-value of 0.18
- For paired t-test, we look at đ, the sample mean of differences in velocities

- If swimmer 1 swam 1.5 m/s with wetsuit and 1.4 m/s with swimsuit, their difference is 0.1 m/s
- đ would be average of 12 differences (e..g, 

- δ is the population mean of difference in velocities (theoretically, for all 
swimmers—not just 12)
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Paired t-test: Example

- H0: δ = 0, the population mean difference in swim velocities between 
swimming with a swimsuit versus a wetsuit equals 0

- That is, wetsuits do NOT change swim velocities
- HA: δ ≠ 0, the population mean difference in swim velocities between 

swimming with a swimsuit versus a wetsuit is non-zero
- That is, wetsuits DO change swim velocities

- t = (đ - δ0)/(sd/√n) , where t is our standardized test statistic (t-score)
- t ~ t(df = n - 1), where n is number of differences/pairs
- 95% CI = đ ± (t* × sd/√n), where t* is point on t(df = n - 1) that has area 0.025 

to its right (assuming α = 0.05)
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Paired t-test: Code

- As always, our computers do the math for us—we just 
need to code and interpret!

- Use t_test()
- We’re used to this from the tidyverse
- A paired t-test is just a single-mean test on the differences
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Paired t-Test: Code for t_test()

- General form: DATASET %>% t_test(response = RESPONSE-VAR.diff)
- swim %>% t_test(response = velocity.diff)

- Again, very similar to before, but now we’re adding “.diff” because we’re interested in the 
difference for each pair

- Hypothesis tests: DATASET %>% t_test(response = RESPONSE-VAR.diff) 
%>% select(statistic, p_value, estimate)
- swim %>% t_test(response = velocity.diff) %>% select(statistic, p_value, 

estimate)

- Confidence intervals: DATASET %>% t_test(response = 
RESPONSE-VAR.diff) %>% select(lower_ci, upper_ci)
- swim %>% t_test(response = velocity.diff) %>% select(lower_ci, upper_ci)
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ANOVA: Analysis of Variance

- ANOVA: Test for when response variable is numerical and explanatory 
variable is categorical (with more than 2 categories)

- H0: μ1 = μ2 = … = μk (i.e., variables are independent) 
- HA: At least 1 mean is not equal to the rest (i.e., variables are dependent)

- Test statistic is F-statistic
- F = standardardized variance BETWEEN groups / standardized variance WITHIN groups

- If H0 is true, F-statistic should be roughly equal to 1 (variance between 
groups should be equal to variance within groups)

- If HA is true, F-statistic should be larger than 1
- Ex: If F is 3.88, the variance BETWEEN groups is 3.88 times larger than the variance WITHIN 

groups, which suggests the population means are different
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ANOVA: Intuition

- Scenario 1, there is little 
variability WITHIN groups but 
much more variability 
BETWEEN groups

- It’s plausible these groups come 
from different populations

- Scenario 2, there is a lot of 
variability WITHIN groups, so 
we’re less sure… this would 
correspond to a low F-statistic
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ANOVA: Theory-Based Inference

- When the ANOVA assumptions 
(next few slides) are satisfied, the 
F-statistic follows an F 
distribution, with two degrees 
of freedom: df1 and df2

- That is, F-statistic ~ F(df1, df2)
- df1 = ngroups − 1, df2 = nobservations − 

ngroups

- The p-value is P(F > observed 
F-statistic)—area to the RIGHT
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Assumptions for (Theory-Based) ANOVA

- Assumption #1: Observations are independent within and across groups
- Think about study design/context (i.e., read the description)

- Assumption #2: Data within each group are approximately normal
- Use Normal Q-Q plots (if data are perfectly normal, they follow the line in the Q-Q plot 

exactly)
- As sample size increases, deviation from normality becomes less of a concern

- Assumption #3: Variability across groups is about equal
- The rule of thumb is we want to see largest variance / smallest variance < 3, which we can 

find via data wrangling
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Assumption #2: Normality
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ggplot(movies_subset, aes(sample = RottenTomatoes, col 

= Genre)) + geom_qq(alpha = 0.30) + stat_qq_line() + 

facet_wrap(~ Genre) + labs(y = "Sample Quantiles", x = 

"Theoretical Quantiles") + guides(col = "none")

- Check via Q-Q plot, which plots 
residuals against theoretical 
quantiles of normal distribution

- If residuals were perfectly normally 
distributed, they’d exactly follow 
the diagonal

- We’re not looking for perfect—just 
make sure it’s reasonable

- Points should have a linear 
relationship, with no breaks at 
tails



Assumption #3: Constant Variability

- Check via data wrangling
- Remember variance is a 

measure of variability
- We don’t expect the variances to 

be exactly the same across 
groups

- As a rule of thumb, we want the 
ratio of largest variance to smallest 
variance to be less than 3

- That is, largest variance / smallest 
variance < 3
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movies_subset %>% drop_na(Genre, 

RottenTomatoes) %>% group_by(Genre) %>% 

summarize(var = var(RottenTomatoes), n = n())



ANOVA: Code

- Strategy #1: Tidyverse R
- ANOVA_MODEL <- anova(lm(Y-VAR ~ X-VAR, data = DATASET))

- tidy(ANOVA_MODEL)

- movies_anova <- anova(lm(RottenTomatoes ~ Genre, data = movies_subset))

- tidy(movies_anova)

- Strategy #2: Base R
- ANOVA_MODEL <- aov(Y-VAR ~ X-VAR, data = DATASET)

- summary(ANOVA_MODEL)

- movies_anova <- aov(RottenTomatoes ~ Genre, data = movies_subset)

- summary(movies_anova)
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ANOVA: More Intuition

- Remember, when assumptions 
are met, F-statistic ~ F(df1, df2)

- Remember, under H0, 
F-statistic should be equal to 1

- If F-statistic is much higher 
than 1, the variance between 
groups is much larger than the 
variance within groups, 
suggesting the HA

- “More extreme” is to the RIGHT!
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ANOVA: Afterwards, How Do We Know Which Group Is Different?

- After seeing evidence against H0 (i.e., 1 of the means is different), how do we 
see which group is different?

- We’ll conduct pairwise t-tests (like what we’ve been doing before)
- To keep Type I errors in check, we use adjusted alpha level, α*

- If we don’t, the probability of a Type I error explodes as we do many pairwise t-tests!
- α* = α/K , where K is the total number of possible two-way comparisons

- K = k(k − 1)/2, where k is the total number of groups
- Ex: If α = 0.05, then when there are 4 groups, α* = 0.05/6 = 0.0083

- Our computers can calculate α* for us (the “bonferroni” correction)
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ANOVA: Afterwards, Pairwise t-Tests

- Pairwise t-Tests isn’t in tidyverse R, so we’re using base 
R (with different syntax)!

- Remember to use “bonf” if you want to computer to 
calculate α*
- pairwise.t.test(DATASET$Y-VAR, DATASET$X-VAR, 

p.adjust.method = "bonf")

- pairwise.t.test(movies_subset$RottenTomatoes, 

movies_subset$Genre, p.adjust.method = "bonf")
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Chi-Squared

- Chi-Squared test: Test for when both response variable and explanatory 
variable are categorical, and at least one has more than 2 categories

- H0: The variables are independent
- HA: The variables are dependent 

- If response variable and explanatory variable were both binary categorical, 
we’d just use difference in proportions (like before)!

- Our test statistic is χ2 (which, essentially, sums and squares every z-score so 
that negatives are accounted for)

- χ2 = Σ(observed - expected / √expected)2

- The intuition is best explained by graphs and tables…
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Chi-Squared: Intuition

- If variables were actually 
independent (i.e., primary 
transport doesn’t affect housing 
status), then we’d expect a graph 
to look like the one on the right

- We’d also expect certain values 
- We expect (0.0389)(1534) = 59.72 

residents who rent homes and use a 
bike, but we observe 67 residents

- Chi-squared squares and sums 
these values to see “total extremity”



If observed = expected, 
what would χ2 equal? Hint: 
χ2 = Σ(observed - expected 
/ √expected)2. 



Question:
If observed = expected, what would χ2 

equal? Hint: χ2 = Σ(observed - 
expected / √expected)2.

If observed = expected, then 
(observed - expected / √expected)2 
= 0, so we just sum of a bunch of 
zeros to get χ2 = 0.

This is why we fail to reject the null 
hypothesis if χ2 is near 0—that 
implies what we observed is very 
close to what we expected under 
the null.



Assumptions for Chi-Squared

- Assumption #1: Random sampling
- Assumption #2: There are at least 10 observations in each cell (check via data 

wrangling)
- count(DATASET, X-VAR, Y-VAR)

- count(grammar, Education, oxford_comma)

- These assumptions must be met for the test statistic to be approximately 
distributed χ2 with degrees of freedom (r − 1)(c − 1), where r is the number of 
rows and c is the number of columns
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Chi-Square: Intuition
- Our test statistic is χ2, which essentially 

sums and squares every (standardized) 
difference between what we expect and 
what we observe

- χ2 = Σ(observed - expected / √expected)2

- χ2 ~ χ2(df = (r − 1)(c − 1))
- r = number of rows
- c = number of columns

- χ2 quantifies how far the observed results 
deviate from what is expected under H0

- A larger value shows stronger evidence 
against H0 of independence (thus, “more 
extreme” is to the RIGHT!)
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Chi-Squared: Code

- Strategy #1: Tidyverse R
- chisq_test(DATASET, Y-VAR ~ X-VAR)

- chisq_test(somerville, housing ~ primary_transport)

- Strategy #2: Base R
- chisq.test(DATASET$X-VAR, somerville$Y-VAR)

- chisq.test(somerville$primary_transport, 

somerville$housing)
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Chi-Square: Afterwards, Examining Residuals

- We could compare the observed versus expected values to identify which 
table cells are contributing the most to the test statistic

- Instead of having to look back and forth between two tables, look at the table 
of residuals

- Residuals with a large magnitude contribute the most to the χ2 statistic
- If a residual is positive, the observed value is greater than the expected value
- If a residual is negative, the observed value is less than the expected
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Chi-Square: Afterwards, Examining Residuals: Code

- General form: chisq.test(DATASET$X-VAR, 
DATASET$Y-VAR)$residuals
- chisq.test(somerville$primary_transport, 

somerville$housing)$residuals
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Recap: Inference Scenarios and Test Statistics

https://drive.google.com/file/d/1i1XTclseg1_CPu
6eECBuaoKDy6XuNMyn/view?usp=drive_link 
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https://drive.google.com/file/d/1i1XTclseg1_CPu6eECBuaoKDy6XuNMyn/view?usp=drive_link
https://drive.google.com/file/d/1i1XTclseg1_CPu6eECBuaoKDy6XuNMyn/view?usp=drive_link


Questions?



Problem Solving Strategies 
and Common Mistakes



First, Load All Relevant Libraries

- library(tidyverse)

- library(infer)

- library(ggplot2)

- library(gglm)

- library(moderndive)

- library(dplyr)

- library(broom)

- library(knitr)  
- There may be more I’m forgetting… it doesn’t hurt to load more to be safe!



Correctly Use the “P-Value Formula”

- “If {null hypothesis} were true, then the probability of 
observing {test statistic} or {more extreme} would be 
{p-value}.”

- This is “interpreting the p-value”
- “Because {p-value} is a {high/low} probability compared 

to {alpha}, we reject {reject/fail to reject} the null 
hypothesis.”

- This is “drawing a relevant conclusion”
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If I want to see if Harvard 
students get less sleep 
than other college 
students, what should my 
hypotheses be (in terms of 
pop. parameters)?
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Question:
If I want to see if Harvard students get less 

sleep than other college students, what 
should my hypotheses be (in terms of pop. 

parameters)?

We have a binary categorical 
explanatory variable (Harvard or 
not) and numerical response 
variable (hours of sleep). This is a 
one-tailed difference of means.

H0: μHarvard - μOther = 0 (Harvard 
students get same amount of sleep)

HA: μHarvard - μOther < 0 (Harvard 
students get less sleep)
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If I observe a difference of 
means of -2.7 hours (and a 
p-value of 0.003), what is 
an interpretation of the 
p-value and a conclusion? 
Assume α = 5%.
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Question:
If I observe a difference of means of -2.7 hours 

(and a p-value of 0.003), what is an 
interpretation of the p-value and a conclusion? 

Assume α = 5%.

Using the p-value formula... 

If there was no difference in mean 
hours of sleep between Harvard 
and non-Harvard students, then 
the probability of observing our 
test statistic, a difference of -2.7 
hours, or less would be 0.3%.

Because 0.3% is a low probability 
(0.3% < 5%), we reject the null 
hypothesis.
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qnorm() or qt()?

- Recall means, difference in means, and linear regression 
use the t distribution—thus, qt() is appropriate for 
finding critical values 

- If you don’t remember, check this guide: 
https://drive.google.com/file/d/1O6gzE4jXfFCyKgBBPO17jfM8NxI9yMZy/
view?usp=sharing 

https://drive.google.com/file/d/1O6gzE4jXfFCyKgBBPO17jfM8NxI9yMZy/view?usp=sharing
https://drive.google.com/file/d/1O6gzE4jXfFCyKgBBPO17jfM8NxI9yMZy/view?usp=sharing


I want to calculate a confidence 
interval for how much more 
money Harvard students spend 
than non-Harvard students. 
Would I use qt() or qnorm()?



Question:
I want to calculate a confidence interval for how 
much more money Harvard students spend than 

non-Harvard students. Would I use qt() or 
qnorm()?

qt()!

Here, we’re working with a 
difference in means, so the 
standardized test statistic follows 
the t distribution.



Questions?



Let’s get some 
practice coding!


