
STAT 100: Week 8
Ricky’s Section



Introductions and Attendance

Introduction: Name

Question of the Week: If you could add one 
consistent item to HUDS, what would it be?
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Important Reminders
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https://docs.google.com/forms/d/e/1FAIpQLSfKv
_FGvso0qm-IvtxKx3Vf6bBzSJE2jamK1gklAzL6Nk
XE8w/viewform 

Anonymous Feedback

4

https://docs.google.com/forms/d/e/1FAIpQLSfKv_FGvso0qm-IvtxKx3Vf6bBzSJE2jamK1gklAzL6NkXE8w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfKv_FGvso0qm-IvtxKx3Vf6bBzSJE2jamK1gklAzL6NkXE8w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfKv_FGvso0qm-IvtxKx3Vf6bBzSJE2jamK1gklAzL6NkXE8w/viewform


Midterm Recap
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Overall…

- We’re very proud of all your learning/growth!
- Many of you came in with no coding background

- Be sure you’re making the most of all the 
resources
- Workshop, section, OH, 1-on-1 OH, Slack

- Improvement is taken into consideration
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Some Important Things I Noticed

- Set a timer on the Oral Component
- Don’t “over-explain” an answer—just say what you need
- The p-value formula: “If {the null hypothesis were true}, 

then the probability of observing {our test statistic} or 
{more extreme} would be {p-value}.”
- Ex: If the coin was fair so that the true probability of heads is 50%, then the 

probability of observing 80% heads of more would be 0.01. Because 0.01 is 
such a low probability, we have evidence to reject the null hypothesis.
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Debrief

- Thoughts? Questions? Comments? Concerns?
- Anything you found surprising?
- Any concepts you want me to go over?
- We also can skip this if everyone just wants to 

move on
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Content Review: Week 8
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Foundations of Probability

- Probability: A value between 0 and 1 (intuitively, a “long-term frequency”)
- Naive probability is all favorable outcomes / all possible outcomes
- Ex: Probability of getting dealt an ace is 4/52 = 0.077

- Outcome: Result after conducting an experiment
- Ex: After the experiment, I get dealt the ace of hearts

- Sample space: Set of all possible outcomes of experiment
- Ex: There are 52 cards I could’ve been dealt

- Event: Collection of outcomes
- Ex: The event I get dealt an ace is the collection of 4 specific outcomes
- If A = the event I get dealt an ace, then P(A) = 0.077
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More on Probability

- Disjoint events: Events that CANNOT occur at the same time
- Ex: The event I get dealt an ace and the event I get dealt a king are disjoint
- Now, the event I get dealt an ace and the event I get dealt a red card are NOT disjoint. Why?

- Independent events: Knowing one event happens gives no info on the other
- Ex: If I flip a fair coin twice, the event I get heads on the 1st flip and the event I get heads on the 

2nd flip are independent
- Now, the event I get dealt an ace and the event I get dealt another ace afterwards (assuming no 

reshuffling) are NOT independent. Why?
- Conditional probability: P(A | B) is probability of A, knowing B occured

- Ex: Given I got dealt a red card, what is the probability I got dealt the ace of hearts? It’s NOT 1/52 
anymore. Why?
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Our Toolkit

- Union: P(A ∪ B) = P(A) + P(B) - P(A ∩ B)
- Intersection: P(A ∩ B) = P(A) P(B | A) = P(B) P(A | B)
- Complement Rule: P(A) = 1 - P(AC), P(A | B) = 1 - P(AC | B)
- Def. of Conditional Probability: P(A | B) = P(A ∩ B) / P(B)
- Bayes’ Rule: P(A | B) = P(B | A) P(A) / P(B)
- LOTP: P(A) = P(A | B) P(B) + P(A | BC) P(BC)
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Union and Disjoint Events

- P(A ∪ B) = P(A) + P(B) - P(A ∩ B)
- Ex: Probability of getting a king or a 

red card is 4/52 + 26/52 - 2/52 = 
28/52

- What happens if A and B are 
disjoint?

- P(A ∩ B) = 0 because A and B cannot 
occur simultaneously 

- Thus, for disjoint events, P(A ∪ B) = 
P(A) + P(B)

- Use Venn diagrams
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Intersection and Independent Events

- P(A ∩ B) = P(A) P(B | A) = P(A | B) 
P(B)

- Ex: Probability of getting a king and a 
red card is (1/13)(2/4) = 2/52

- What happens if A and B are 
independent?

- P(B | A) = P(B) because A happening 
gives no information on B

- Thus, for independent events, P(A ∩ 
B) = P(A) P(B)

- P(A ∩ B) is P(A) and P(B, given A)
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Complement Rule

- P(A) = 1 - P(AC)
- Ex: Probability of rolling a 6 (⅙) is 1 

minus probability of NOT rolling a 6 
(1 - ⅚) 

- This is because all possible 
outcomes in sample space sum to 1

- Conditional probabilities are 
still probabilities, so…

- P(A | B) = 1 - P(AC | B)
- Use Venn diagrams
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Conditional Probability

- Two ways to tackle this
- P(A | B) = P(A ∩ B) / P(B) by 

definition
- Conditioning on B means we now 

live in B—it’s our new sample space
- Divide by P(B) so the total prob. is 1

- P(A | B) = P(B | A) P(A) / P(B) by 
Bayes’ Rule

- Remember the definition of 
intersection from two slides ago?

- Use Venn diagrams
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Law of Total Probability (LOTP)

- P(A) = P(A | B) P(B) + P(A | BC) 
P(BC)

- What are the two ways P(A) can 
happen?

- We can partition the sample space 
with B and BC

- P(A) = P(A ∩ B) or P(A ∩ BC)
- By intersection and disjoint, P(A) = 

P(A | B) P(B) + P(A | BC) P(BC)
- Use Venn diagrams
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Recapping Our Toolkit: Notes

- Union: P(A ∪ B) = P(A) + P(B) - P(A ∩ B)
- For disjoint events, P(A ∪ B) = P(A) + P(B) because P(A ∩ B) = 0

- Intersection: P(A ∩ B) = P(A) P(B | A) = P(B) P(A | B)
- For independent events, P(A ∩ B) = P(A) P(B) because P(A | B) = P(A)

- Complement Rule: P(A) = 1 - P(AC), P(A | B) = 1 - P(AC | B)
- Use when you see “at least” (e.g., “Find the probability of rolling a 5+ at least once in 3 rolls”)

- Def. of Conditional Probability: P(A | B) = P(A ∩ B) / P(B)
- Bayes’ Rule: P(A | B) = P(B | A) P(A) / P(B)
- LOTP: P(A) = P(A | B) P(B) + P(A | BC) P(BC)

- Use for wishful thinking (e.g., “I really wish I knew which factory the cone came from”)
- In general with probability, start by defining events
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What are the 2 main 
strategies for finding 
unconditional probability, 
such as P(A)?
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Question:
What are the 2 main strategies for 
finding unconditional probability, 

such as P(A)?

Complement rule and LOTP.

We often use complement for “at 
least” (e.g., “Find the probability of 
rolling a 5+ at least once in 3 rolls”).

We often use LOTP for “wishful 
thinking” (e.g., “I really wish I knew 
which factory the cone came 
from”).
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One More Probability!

- Positive predictive value (PPV): In a diagnostic test, the probability that a 
person has the disease, given that they tested positive for it (true positive)

- PPV = P(D | T+), where D is event of having disease and T+ is event of testing 
positive
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If I roll a fair 6-sided dice 
twice, what is the 
probability that I land 5 or 
higher at least once?
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Question:
If I roll a fair 6-sided dice twice, what 

is the probability that I land 5 or 
higher at least once?

By complement rule, P(rolling 5+ at 
least once) = 1 - P(not rolling 5+ 
either turn).

Since rolls are independent, P(not 
rolling 5+ either turn) = P(not 
rolling 5+ on a turn) × P(not rolling 
5+ on a turn).

We know P(not rolling 5+ on a turn) 
= 4/6 = ⅔. Thus, 1 - (⅔)(⅔) = 5/9.
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Random Variables

- Random variable: A function that maps each event in the 
sample space to a number

- Intuitively, think of a r.v. as an unknown value that 
“crystallizes” to a certain number AFTER an experiment
- Ex: X is a r.v. for the number of heads I get after flipping 10 coins. X could 

be 0, 1, …, or 10. After the experiment, it “crystallizes” to one of those 
numbers.
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A Silly (but Useful) Intuition for Random Variables

- Think of random variables as 
mystery boxes in Mario Kart

- It’s unknown what it will 
crystallize to, but we can still 
describe the random variable 
will probabilities

- For example, there’s a pretty low 
probability this random variable will 
crystallize to a bullet bill
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Two Types of Random Variables

- Discrete r.v.s: Can 
crystallize to countable 
numbers

- Usually, discrete r.v.s 
are counted
- Ex: The number of people 

who show up to a party 
tomorrow (could be 0, 1, 2, …)

- Continuous r.v.s: Can 
crystallize to any real 
number in an interval

- Usually, continuous 
r.v.s are measured
- Ex: The temperature at noon 

tomorrow (could be any real 
number above absolute zero)
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Probability Distributions

- Probability distributions: Functions that give probabilities of all possible 
outcomes for a r.v.

- Intuitively, it describes a r.v. through its probabilities
- We can learn a lot about a r.v. by its probability distribution

- For discrete r.v.s, we use Probability Mass Functions (PMFs)
- f(x) = P(X = xi)
- “Probability of big X (r.v.) crystallizing to little x (a certain value)”

- For continuous r.v.s, we use Probability Density Functions (PDFs)
- f(x), where P(a ≤ X ≤ b) = ∫a

b f(x)dx
- For continuous r.v.s, the probability of X crystallizing to a certain value is 0, so we’re 

concerned with X crystallizing to any value within some interval
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PMFs for Discrete Random Variables

- PMF: f(x) = P(X = xi)
- “Probability of big X (r.v.) 

crystallizing to little x (a certain 
value)”

- PMF must sum to 1
- Intuitively, all possible probabilities 

should sum to 1
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xi 2 3 4 5 6 7 8 9 10 11 12

P(X = xi) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36



Expected Value, Variance, and SD

- These are useful summary statistics to describe a r.v.
- Expected value: Weighted mean of a r.v.

- E(X) = Σ xi P(X = xi) = μ
- We’re weighing each possible crystallization by its probability

- Variance: Measure of spread of a r.v.
- Var(X) = Σ (xi - μ)2 P(X = xi) = σ2

- SD: Average distance of all points from the mean of a r.v.
- SD(X) = √Var(X) = σ
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What is the 
expected value of a 
dice roll? Interpret 
the meaning in 
context.
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Question:
What is the expected value of a dice 

roll? Interpret the meaning in 
context.

Formula: E(X) = Σ xi P(X = xi).

X, the r.v. for the value of a dice 
roll, can “crystallize” to 1, 2, 3, 4, 5, 
or 6 (with ⅙ probability of each).

E(X) = 1(⅙) + 2(⅙) + 3(⅙) + 4(⅙) + 5(⅙) + 
6(⅙) = 3.5

This is the weighted mean. On 
average, we expect the value of our 
roll to be 3.5.
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PDFs for Continuous Random Variables

- Continuous r.v.s are trickier 
because the probability X 
crystallizes to any one value is 0

- PDF: f(x), where P(a ≤ X ≤ b) = ∫a
b 

f(x)dx
- Intuitively and visually, think of 

PDF as a shape whose area 
represents probability

- Thus, the area of the entire shape is 1
- f(x) evaluated at any certain point is NOT 

probability; here, probability is AREA
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Special Types of Random Variables

- The really important types of r.v.s (which show up often) have names
- If your r.v. matches the “story” of a named random r.v., it makes your life 

easier
- X ~ Name(Values of Key Parameters)

- Ex: X ~ Bin(100, 10) is read as “X is distributed binomial with parameters 100 and 10” 
- Parameters: Named r.v.s are families, so parameters specify the distribution 

with a certain shape/center/spread
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Normal Distribution

- Normal distribution: A 
symmetric and unimodal “bell 
shape” that approximates many 
distributions

- N(μ, σ) has 2 parameters
- μ is mean
- σ is standard deviation

- Z(0, 1) is Standard Normal
- 0 is mean
- 1 is standard deviation
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Standardizing and Z-Scores

- Standardizing: Transforming 
normal r.v. (X) into standard 
normal r.v. (Z)

- Comparing in terms of Z-scores 
(standard deviations) is easier

- Z-score: Measure of how many 
SDs the sample statistic is away 
from its mean

- Z-score = (X - μ) / σ 
- Z-score for test statistic = (statistic - 

μ) / σ
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The Important Functions for Normal Distribution

- pnorm(): Used to calculate probabilities on a normal distribution (often, for 
p-value during hypothesis test)

- Ex: What is the probability a student scores an 1800 on the SAT if the scores are N(1500, 300)?
- pnorm(q = TEST-STAT, mean = MEAN, sd = STAN-DEV) 

- Ex: pnorm(q = 1800, mean = 1500, sd = 300) = 0.8413447
- qnorm(): Used to calculate quantiles on a normal distribution (often, for 

critical value during confidence interval)
- Ex: What score on the SAT would put a student in the 99th quantile (percentile)?

- qnorm(p = QUANTILE, mean = MEAN, sd = STAN-DEV) 
- Ex: qnorm(p = 0.99, mean = 1500, sd = 300) = 2197.904
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Why Does Any of This Matter?

- Central Limit Theorem (CLT): For random samples and 
a large sample size, the sampling distribution of many 
sample statistics is approximately normal 

- Thus, when assumptions are met, we can conduct inference using the 
normal distribution as a good approximation

- We will revisit inference next week through this lens!
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In Closing…

- Probability is hard
- Don’t feel bad if this takes a bit to click
- Probability is important, but it’s not the focus of this 

course—after this p-set, it should be more chill
- If you’re interested in more probability, 

consider STAT 110!
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Questions?
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P-Set 5
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Have a great rest 
of your week!
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