STAT 100: Week 6

Ricky's Section

Introductions and Attendance

Introduction: Name

<u>**Question of the Week</u>**: What is your favorite "thing" at the moment? Snack, activity, book, etc.</u>

Important Reminders

https://docs.google.com/forms/d/e/1FAIpQLSfKv FGvsooqm-IvtxKx3Vf6bBzSJE2jamK1gklAzL6Nk XE8w/viewform

- Written Component: Wed, Oct. 16 from 6 to 9
 PM in SC Hall B
- **Oral Component**: 10 minute Zooms, Wed-Fri
- Practice Oral "Exams" have been released
- No section next week 🙁
- You all got this! 🙂

Content Review: Week 6

Recap of Inference

- Last week, we started **inference** with **confidence intervals**
- Now, we'll continue with hypothesis testing
- Though complementary, they are different
 - Confidence intervals estimate the parameter
 - Hypotheses test a certain
 "conjecture" about the parameter

A Tale of Two Hypotheses

- <u>**Test statistic</u>**: Numerical summary of the **sample data** (often, but not always, equal to our **observed sample statistic**)</u>
- <u>Null hypothesis (H_o)</u>: World where research conjecture is false ("no change, status quo")
 - Null distribution is sampling distribution of test statistic assuming null hypothesis is true
- <u>Alternative hypothesis (H_A)</u>: World where research conjecture is true
 - Alt. distribution is sampling distribution of test statistic assuming alt. hypothesis is true
- <u>P-value</u>: Probability of getting the **observed test statistic OR MORE EXTREME** if **null hypothesis is true**, represented by area under curve of **null distribution**

Can the null and alternative hypotheses both be true?

Question:

Can the null and alternative hypotheses both be true?

No!

The **null hypothesis** and **alternative hypotheses** are mutually exclusive. That is, they CANNOT coexist.

Only 1 can be true. Either this drug works, or it doesn't. Either this coin is rigged, or it's not. And so on.

Essentials of Hypothesis Testing

- **<u>Step 1</u>**: State hypotheses (in terms of population parameter)

- Null hypothesis posits the coin is normal. Alternative hypothesis argues it's rigged. $H_0: p = 0.5, H_A: p > 0.5$
- **<u>Step 2</u>**: Specify a **significance level**, α (usually $\alpha = 0.05$)

<u>Step 3</u>: Generate null distribution

- If I were to repeatedly sample under the null hypothesis (assuming the coin has a normal 50% chance of heads), what would my sampling distribution look like?
- **<u>Step 4</u>**: Compute **observed test statistic** and **compute p-value**
 - Let's say, with n = 50, I observe 30 heads, so $\hat{p} = 0.6$. Under our null distribution, this has a p-value of 0.103.
- **<u>Step 5</u>**: Draw conclusions **in the context of the problem**
 - The probability of seeing 30 or more heads when flipping a fair coin 50 times is equal to 0.103. Since our p-value is high (0.103 > 0.05), we fail to reject the null hypothesis. There is little evidence the coin is rigged.

The "P-Value Formula"

- "If {<u>null hypothesis</u>} were true, then the probability of observing {<u>test statistic</u>} or {<u>more extreme</u>} would be {<u>p-value</u>}."
- "Because {<u>p-value</u>} is a {<u>high/low</u>} probability, we reject {<u>reject/fail to reject</u>} the null hypothesis."

If I want to see if Harvard students get less sleep than other college students, what should my hypotheses be (in terms of pop. parameters)?

Other Parameters and Statistics

	Response Variable		Numeric Quantity	Sample Statistic	Population Parameter
1 variable	Numerical		Mean	x	μ
	Binary Categorical		Proportion	ĝ	р
	Response variable	Explanatory Variable	Numeric Quantity	Sample Statistic	Population Parameter
2 variables	Numerical	Binary Categorical	Difference in Means	$\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2$	μ ₁ - μ ₂
	Binary Categorical	Binary Categorical	Difference in Proportions	$\hat{\mathbf{p}}_1 - \hat{\mathbf{p}}_2$	p ₁ - p ₂
	Numerical	Numerical	Correlation	r	ρ

Question:

If I want to see if Harvard students get less sleep than other college students, what should my hypotheses be (in terms of pop. parameters)? We have a **binary categorical explanatory variable** (Harvard or not) and **numerical response variable** (hours of sleep). This is a **difference of means**.

H_o: μ_{Harvard} - μ_{Other} = 0 (Harvard students get same amount of sleep)

H_A: μ_{Harvard} - μ_{Other} < ο (Harvard students get less sleep)

If I observe a difference of means of -2.7 hours (and a p-value of 0.003), what is an interpretation of the p-value and a conclusion? Assume $\alpha = 5\%$.

Question:

If I observe a difference of means of -2.7 hours (and a p-value of 0.003), what is an interpretation of the p-value and a conclusion? Assume $\alpha = 5\%$. Using the p-value formula...

If there was no difference in mean hours of sleep between Harvard and non-Harvard students, then the probability of observing our test statistic, a difference of -2.7 hours, or less would be 0.3%.

Because 0.**3%** is a **low** probability (0.3% < 5%), we **reject** the null hypothesis.

Decisions, Decisions

- There are 4 potential outcomes of a **hypothesis test** (shown below), depending on what we do and what's actually true
- $\underline{\alpha}$ Probability of Type I Error (rejecting H_o when it's true)
- **\underline{\beta}** Probability of Type II Error (failing to reject H_o when H_A is true)
 - As α decreases, β increases (but they DON'T add up to 1)
- **<u>Power</u>**: Probability of rejecting H_0 when H_A is true (best outcome \bigoplus)

- Power = $1 - \beta$

	We Reject H _o	We Fail to Reject H _o
H _o is true	Type I Error	Correct Decision 🙂
H _A is true	Correct Decision 😁	Type II Error

If we reject the null hypothesis, is it possible we committed a Type I Error? A Type II Error?

Question:

If we reject the null hypothesis, is it possible we committed a Type I Error? A Type II Error? I remember Type I Error as a "delusional scientist" and Type II Error as a "missed opportunity."

If we reject the null hypothesis, there's a possibility we committed a Type I Error but no possibility we committed a Type II Error (by definition, this would require FAILING to reject the null hypothesis).

More on Power...

- **<u>Power</u>**: Assuming H_A , what is the probability we reject H_A ?
- Think of **power** as a thought experiment—it helps us better understand **hypothesis testing**
 - In real life, we don't know if H_A is true... or where it's centered at!
 - There is an infinite number of alternative distributions that could exist... let's pick just one

Intuition behind Power

- **<u>Power</u>**: Assuming H_A , what is the probability we reject H_a ?
 - Given H_A is true, we look at the alternative distribution (which, now, is the true state of the world)
 - The **alpha level** is the probability of rejecting **H**_o in the **null distribution**
 - The critical region (to the right of *α*) is where we reject H_o
 - Thus, in the alternative distribution, the region to the right of the alpha level is power

Example: Baseball

- Ricky, an avid baseball player, has been a **0.250** career hitter, but he suddenly improves to be a **0.333** hitter
- He wants a raise, but he has to convince his manager he genuinely improved
- The manager offers to examine his performance in 20 trials
- $H_0: p = 0.250, H_A: p > 0.250 (p = 0.333)$
 - Because the alternative hypothesis is p > 0.250, there is an infinite amount of alternative distributions that could exist... specifically, I'm interested in the one centered at 0.333
- He wants his test to be "powerful"
 - When $\alpha = 0.05$, he needs to get 9 or more hits to get a small enough **p-value** to reject H_{0}
 - Unfortunately, at $\alpha = 0.05$, the **power of this test** is **0.211** (only a 21% probability of being in the best outcome), so how can we improve the **power of this test**?

How to Increase Power: Increase Alpha

- This makes it easier to reject H_o
- Also, this "shifts" the critical line to the left, leading to more area in the "power region" of the alternative distribution
- Intuitively, we now have a higher probability of rejecting H_o, and power is probability of rejecting H_o when H_A is true

https://towardsdatascience.com/5-ways-to-increase-statistical-power-377cooddo214

How to Increase Power: Increase Sample Size

 This decreases spread of histograms, leading to less overlap between null distribution and alternative distribution

https://towardsdatascience.com/5-ways-to-increase-statistical-power-377cooddo214

How to Increase Power: Increase Effect Size

- <u>Effect Size</u>: Difference between true value of parameter and null value
- This makes it easier for us to notice a difference
- Also, this "shifts" the center of the alternative distribution to the right, leading to more area in the "power region"

https://towardsdatascience.com/5-ways-to-increase-statistical-power-377cooddo214

More on Effect Size...

- Statistical Significance ≠ Practical Significance

- *Ex: A study concluded couples who met online are more likely to be satisfied (p-value < 0.001), but their happiness value of 5.64 isn't much more than the happiness value of 5.48 for couples who met in-person*
- Let's say, magically, Ricky actually improved to **0.400**
- Now, the **effect size** (**0.400 0.250**) is larger than before
 - Intuitively, it should now be more noticeable if he actually improved from before, so our **hypothesis test** is more "powerful"

What is the problem with increasing the alpha level?

Question:

What is the problem with increasing the alpha level?

Though increasing the **alpha level** leads to higher **power**, it also leads to more **false positives** (a higher probability of a **Type I Error**).

There are a lot of trade offs, so these important choices depend on the context of the study.

Important Code for Week 6

https://drive.google.com/file/d/1PcOvfGEGCXUF BY5mfi2jMuli7k5j6Frp/view?usp=sharing

Questions?

Midterm Review (Weeks 1-6)

Week 2: Data Visualization

- <u>Grammar of graphics</u>: Dataset, geom, aesthetic
- <u>Color palettes</u>: Sequential, diverging, qualitative
- <u>Choosing the right graph</u>

Week 3: Data Wrangling

- **Data joins**: Left, right, inner, full
- <u>Creating/modifying variables</u>
- <u>Grouping/selecting data</u>
- **<u>Summary statistics</u>**: Mean, median, SD, IQR
- Handling missing values (NA)
- Interpreting code in English

Week 4: Data Collection

- <u>Groups</u>: Sample, census, population
- Observational study vs. experiment
- <u>**Two types of bias</u>**: Sampling, nonresponse</u>
- <u>Four sampling methods</u>: Simple, systematic, cluster, stratified

Week 5: Simulation-Based Confidence Intervals

- <u>Parameter vs. statistic</u>
- **Distributions**: Sampling, bootstrap
- <u>**Confidence intervals</u>**: Constructing, interpreting</u>

Week 6: Simulation-Based Hypothesis Testing

- <u>Hypotheses and Distributions</u>: Null and alternative
- <u>Hypothesis tests</u>: Constructing, interpreting
- <u>**Pitfalls**</u>: Power, p-value

- **PLEASE SET A TIMER**! There should be 3 questions in 10 minutes, so try not to "ramble"
- If you haven't already, make a **study guide**
- Partial credit counts
- Remember to **load all relevant libraries**
- **Pace yourself**—if a question is taking too long, move on
- Sign up for **practice oral exams** (usually not 3 questions)

Debugging Practice

Let's Practice Debugging!

4

https://posit.cloud/spaces/534915/content/895668

40

Have a great rest of your week!