STAT 100: Week 10

Ricky's Section

Introductions and Attendance

Introduction: Name

<u>**Question of the Week</u>**: If money/time/prestige didn't matter, what would be your dream job and why?</u>

Important Reminders

Anonymous Feedback

https://docs.google.com/forms/d/e/1FAIpQLSfKv FGvsoogm-IvtxKx3Vf6bBzSJE2jamK1gklAzL6Nk XE8w/viewform

Content Review: Week 10

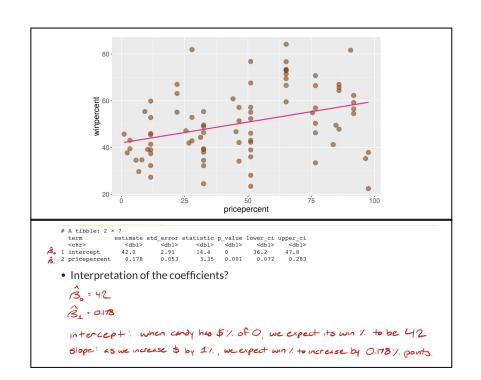
Linear Regression (In a Nutshell)

- <u>Linear regression</u>: Models the linear relationship between numerical response variable (y) and explanatory variables (x), which can be either numerical or categorical
 - For now, we'll focus on **simple linear regression**, which only has one **explanatory variable**
- The form of this model is $\hat{y} = \hat{B}_0 + \hat{B}_1 x$
 - Note: \hat{B} is supposed to represent beta hat $(\beta + \hat{A})$
- The **coefficients** $(\hat{\mathbf{B}}_0$ and $\hat{\mathbf{B}}_1)$ have different interpretations depending on whether x is **numerical** or **categorical**

Explanatory Variable: Numerical

- When x is **numerical...**

- The model represents a "line of best fit"
- $\hat{\mathbf{B}}_{\mathbf{0}}$ is the y-intercept
 - When price percentage equals 0%, the average win percentage is 42%
- $\hat{\mathbf{B}}_{\mathbf{i}}$ is the slope
 - As price percentage increases by 1%, the win percentage increases by 0.178%, on average
- **Least-squares regression** finds the optimal values of $\hat{\mathbf{B}}_{0}$ and $\hat{\mathbf{B}}_{1}$ by minimizing **residuals** (errors)



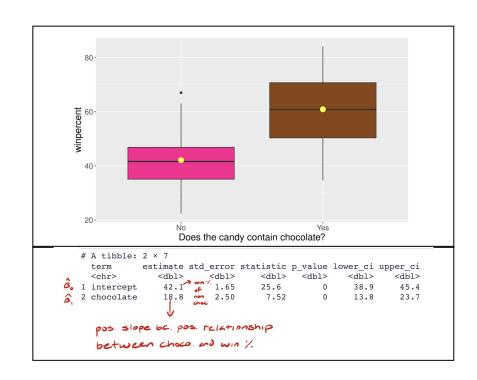
Explanatory Variable: Binary Categorical

- When x is **binary categorical**...
 - The model represents means (one for each of the two group)
 - $\hat{\mathbf{B}}_{\mathbf{o}}$ is the mean of y in the **baseline** group (when x = 0)
 - For candy without chocolate, the average win percentage is 42.1%
 - B

 ₁ is the difference in means of other group from baseline group

$$(\bar{y}_{other} - \bar{y}_{baseline})$$

- Candy with chocolate has a higher average win percentage than candy without chocolate by 18.8%



Linear Regression: Code

- **<u>Fitting the model</u>**: Use this to build your model
 - MODEL <- Im(Y-VAR ~ X-VAR, data = DATASET)
 - model <- Im(winpercent ~ pricepercent, data = candy)
- **Getting the numbers**: Use this to summarize your model
 - get_regression_table(MODEL)
 - get_regression_table(model)
- **<u>Predicting</u>**: Use this for your model to predict y-value of new instances
 - predict(MODEL, newdata = data.frame(Y-VAR = VALUE))
 - predict(model, newdata = data.frame(pricepercent = 85))

More on Linear Regression

- <u>Interpolation</u>: Predicting values that fall **within** a dataset (generally good)
- <u>Extrapolation</u>: Predicting values that fall **outside** an observed range (generally not good)
- Residual: Error in observed y versus predicted y (positive residual means model underestimated; negative residual means model overestimated)
 - $\mathbf{e}_{\mathbf{i}} = \mathbf{y}_{\mathbf{i}} \hat{\mathbf{y}}_{\mathbf{i}}$ (observed predicted)
- Sample correlation coefficient (r): Measures strength of linear relationship between 2 numeric variables in a sample, ranging from -1 to 1
 - - 1 is perfectly negative relationship
 - 1 is perfectly positive relationship

If r ranges from -1 to 1, what are the possible values for r²?

Question:

If r ranges from -1 to 1, what are the possible values for r²?

0-1!

As a result of squaring the numbers, r² can only take on non-negative values.

r²: Coefficient of Determination

- <u>r</u>²: Percent of **total variation** in y (**response variable**) explained by the **model**
 - $\mathbf{r}^2 = (\mathbf{r})^2 = Var(\hat{\mathbf{y}}_i)/Var(\mathbf{y}_i)$
 - If the **linear model** perfectly captured the **variability** in the observed data, then $Var(\hat{y}_i) = Var(y_i)$; thus, \mathbf{r}^2 would be 1
 - If \mathbf{r}^2 is too low, try different model; however, \mathbf{r}^2 only increases as new **predictors** are added to a model
- <u>adj(r²)</u>: Value of r² adjusted for size of model (penalizes too-large models)
 - $adj(r^2) = r^2 \times ((n-1)/(n-p-1))$
 - n is sample size, p is number of predictors in model
- Basically, graph your data and pick the model with **highest adj(r²)**
 - glance(MODEL)
 - Ex: glance(model)

The model predicts a y-value of 26 while the (actual) observed y-value is 30. What is the residual, and what does it mean?

Question:

The model predicts a y-value of 26 while the (actual) observed y-value is 30. What is the residual, and what does it mean?

 $\mathbf{e_i} = \mathbf{y_i} - \mathbf{\hat{y}_i}$ (observed - predicted)

The **residual** is 4 (30 - 26). Thus, the model **underestimated** by 4.

Visually, the "line of best fit" is below the actual data point.

Population Model vs. Estimated Model

- **Population model**: $y = B_0 + B_1 x + \varepsilon$
 - ε is error/"random noise" around the line (population parameter for the residuals)
 - $\quad \epsilon \sim N(0, \sigma)$
 - **B**_o and **B**₁ are population parameters

- **Estimated model**: $\hat{y} = \hat{B}_0 + \hat{B}_1 x$
 - This is what our "line of best fit" is
 - $\hat{\mathbf{B}}_{0}$ and $\hat{\mathbf{B}}_{1}$ are estimates of the **population parameters**
 - ε "disappears" because the
 estimated model is a
 straight line

Where else have we seen "hats" (^) used to indicate estimates?

Question:

Where else have we seen "hats" (^) used to indicate estimates?

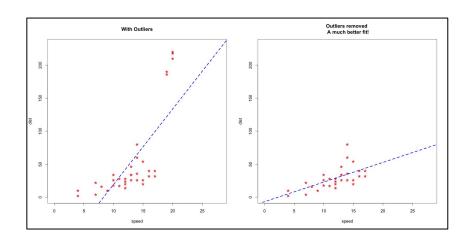
Inference!

Recall **p̂** (sample proportion) is used to estimate **p** (population proportion).

This is a common theme in statistics.

Influential Points

- High leverage: Points with unusual
 x-values relative to rest of data points
 - These points have a large effect on $\hat{\mathbf{B}}_{o}$ and $\hat{\mathbf{B}}_{.}$
- **Outliers**: Points with unusual **y-values** relative to their **x-values**
 - These points do not follow the general linear trend in the data
- Influential points: Points with a strong effect on $\hat{\mathbf{B}}_{0}$ and $\hat{\mathbf{B}}_{1}$ (when removed, these coefficients substantially change)
 - Outliers with high leverage are potentially influential

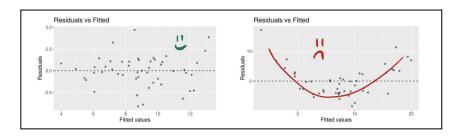


Assumptions for Linear Regression

- <u>Linearity</u>: The data shows a **linear** trend (thus, a linear model is appropriate)
- <u>Constant Variability</u>: The variability of the response variable about the line remains roughly constant as the explanatory variable changes
- <u>Independence</u>: Each observation is **independent** (i.e., value of one observation provide no information about value of others)
- **Normality**: The **residuals** (errors) are approximately **normally distributed**

Assumption #1: Linearity

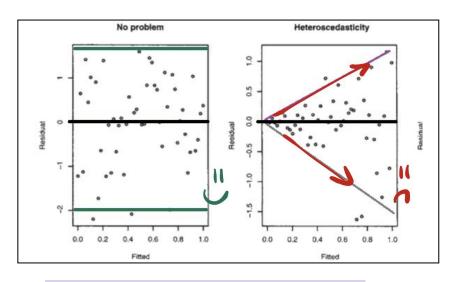
- Check via residual plot,
 which plots residuals of model across domain
- If data is linear, points should scatter from y = o randomly, with no pattern



- ggplot(MODEL) + stat_fitted_resid()
- ggplot(model) + stat_fitted_resid(alpha = 0.25)

Assumption #2: Constant Variance

- Check via **residual plot**, which plots residuals of model across domain
- Vertical spread of points should be roughly constant across domain, with no "fanning"
 - This interpretation is different from linearity; here, cite the upper and lower bounds (in green) to show there is no "fanning"



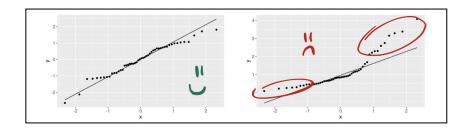
- ggplot(MODEL) + stat_fitted_resid()
- ggplot(model) + stat_fitted_resid(alpha = 0.25)

Assumption #3: Independence

- Check by considering how data was collected
- If there's **independence**, knowing observation #1 gives no information about observation #2
 - Ex: If data was randomly sampled, then independence can be reasonably assumed
 - Ex: If data was collected within a family (and we're measuring blood sugar, e.g.), then independence might not apply. Why?

Assumption #4: Normality

- Check via Q-Q plot, which plots residuals against theoretical quantiles of normal distribution
 - If residuals were perfectly normally distributed, they'd exactly follow the diagonal
 - We're not looking for perfect—just make sure it's reasonable
- Points should have a linear relationship, with no breaks at tails



- ggplot(MODEL) + stat_normal_qq()
- ggplot(model) + stat_normal_qq(alpha = 0.25)

Inference in Regression: Hypothesis Tests

- The **observed data** (x_i, y_i) is assumed to have been **randomly sampled** from a population where the **explanatory variable** (X) and the **response variable** (Y) follow a **population model**
 - **Population model**: $Y = B_0 + B_1X + \varepsilon$
 - Like before, but we're now using capital letters to indicate **random variables**
 - **Estimated model**: $\hat{\mathbf{y}} = \hat{\mathbf{B}}_{0} + \hat{\mathbf{B}}_{1}\mathbf{X}$
- Usually, we're concerned with **slope parameter** (B₁)
 - $\mathbf{H_o}$: $\mathbf{B_i} = \mathbf{o}$ (i.e., the slope is zero, so there is no association between X and Y)
 - $\mathbf{H_A}$: $\mathbf{B_1} \neq \mathbf{o}$ (i.e., the slope is non-zero, so there is some association between X and Y)

Inference in Regression: Hypothesis Tests

- When **assumptions** are met (including 4 assumptions for linear regression), then the t-statistic follows a t-distribution with degrees of freedom n-2, where n is the number of ordered pairs in the dataset

- Our computers can calculate this for us!
 - get_regression_table(MODEL)
 - get_regression_table(model)

Inference in Regression: Confidence Intervals

- <u>Confidence interval</u>: Recall the form of a confidence interval is CI = sample statistic ± ME
- $CI = \hat{\mathbf{B}}_{1} \pm (\mathbf{t} \times \mathbf{SE}(\hat{\mathbf{B}}_{1}))$
 - t^* is the point on a *t*-distribution with n-2 degrees of freedom and $\alpha/2$ area to the right
 - "We are $\{\underline{\alpha}\}$ % confident B_1 is in the CI; that is, with $\{\underline{\alpha}\}$ % confidence, an increase in $\{\underline{\text{explanatory variable}}\}$ by 1 unit is associated with a change in average $\{\underline{\text{response variable}}\}$ between $\{\underline{\text{lower bound}}\}$ and $\{\underline{\text{upper bound}}\}$ units."
 - Ex: With 95% confidence, an increase in age of one year is associated with a change in average RFFT score between (-1.44, -1.08) points; i.e., a decrease in average RFFT score between 1.08 to 1.44 points.
- Again, our computers can calculate this for us (use get_regression_table())!

Confidence Interval vs. Prediction Interval

- Confidence interval for mean response: Tries to find plausible range for parameter
 - Centered at $\hat{\mathbf{y}}$, with smaller SE
 - Ex: We are 95% confident that the average RFFT score for individuals who are 50 years old is between 72.27 and 76.69 points.

- Prediction interval for individual response: Tries to find plausible range for a single, new observation
 - Centered at $\hat{\mathbf{y}}$, with larger SE
 - Ex: For a 50-year-old individual, we predict, with 95% confidence, their RFFT score is between 28.87 and 120.10 points.

Confidence Interval vs. Prediction Interval: Code

- OBSERVATION-OF-INTEREST <data.frame(EXPL-VAR(S) = VALUE(S))
- predict(MODEL, newdata =
 OBSERVATION-OF-INTEREST, interval =
 "confidence", level = CONF-LEVEL)
 - house_of_interest <- data.frame(livingArea = 1500, age = 20, bathrooms = 2, centralAir = "yes")
 - predict(model, house_of_interest, interval = "confidence", level = 0.95)

- OBSERVATION-OF-INTEREST <data.frame(EXPL-VAR(S) = VALUE(S))
- predict(MODEL, newdata =
 OBSERVATION-OF-INTEREST, interval =
 "prediction", level = CONF-LEVEL)
 - house_of_interest <- data.frame(livingArea = 1500, age = 20, bathrooms = 2, centralAir = "yes")
 - predict(model, house_of_interest, interval =
 "prediction", level = 0.95)

Intuitively, why would there be more uncertainty (and thus a higher SE) in a prediction interval than in a confidence interval?

Question:

Intuitively, why would there be more uncertainty (and thus a higher SE) in a prediction interval than in a confidence interval?

There are many factors (other than age) that go a person's RFFT score.
Thus, **prediction** is highly variable.

Conversely, a CI tries to find a plausible range for a parameter (specifically, population mean). We're now thinking about a population rather than a single observation, and means "average out" with large numbers.

Questions?

Oral Exam Practice

Person A (Grade Q1 and Q3, Answer Q2 and Q4)

https://docs.google.com/document/d/1jw1NSm-EGHBConSE2OLU8WY5CfpnC5O1TI JgEHGDNg/ edit?usp=sharing

Person B (Grade Q2 and Q4, Answer Q1 and Q3)

https://docs.google.com/document/d/1smvpX3ni Z5QWhvKGahQ-es8mqJAeXlAmpVNX5ZZlg9M/e dit?usp=sharing

Solutions

https://docs.google.com/document/d/1EBAkWs3 75OYEPssi8EPg8YbCbDoy9H6VFs7Y43cYJ4U/edit ?usp=sharing

P-Set 7

Have a great rest of your week!